设A为n阶方阵,若A2=0,则A=0对还是错设A,B同为n阶矩阵,若AB=E,则必有BA=E

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 11:28:43
设A为n阶方阵,若A2=0,则A=0对还是错设A,B同为n阶矩阵,若AB=E,则必有BA=E
xR[N@݊ߤMI 0E (hD-Rܡb Ӧ?ä=9gnwW]|ʲjZZi2,g p;}hnȄ!LԂ@S1kL-S*%T1g?q{T( 'dp'k.fl7PqV}1,~UM;7giQ6֣E+m!Uo` Bβ-{H>fNC d Jii TDt֌BUd2^Sjv䃀R&(|o괘m&\1X?iHd0F ][0\pOljnQ1چqK#BpF/PyUn72D㞠dvmՌ6{y9>)䆱Yc//12

设A为n阶方阵,若A2=0,则A=0对还是错设A,B同为n阶矩阵,若AB=E,则必有BA=E
设A为n阶方阵,若A2=0,则A=0对还是错
设A,B同为n阶矩阵,若AB=E,则必有BA=E

设A为n阶方阵,若A2=0,则A=0对还是错设A,B同为n阶矩阵,若AB=E,则必有BA=E
1.
你的A2=0,是不是A的平方的意思,即A^2,假如是这样:
分析:
A^2=A*A=0
两边取行列式:
|A^2|=|A*A|=|A|*|A|=0
得:|A|=0
一个矩阵的行列式=0,不一定有这个矩阵是0矩阵,如:
A=
1 1
1 1
有|A|=0,但A矩阵不是0矩阵.
所以原命题是错的.
2.
分析:
若AB=E,
得:|AB|=|A||B|=1
得出,|A|不等于0,且|B|不等于0,
所以A,B这两个矩阵都可逆的.
因为A乘A的逆=E
所以A的逆就是B了,
同样,B的逆就是A了.
所以BA=A的逆*A=E
所以原命题是对的.

两题明显错误!