求37的45次方的92次方除以19的余数.最好用同余做

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 11:58:52
求37的45次方的92次方除以19的余数.最好用同余做
xSN*AY2:|$wF%'wut+Q:Vnu5#J7STr" SXA[~L(AS^AW[噥9J{66=ȔC*m|y#݅0=> w_e@ݓ.u?Ew tm3 5m.YOwA=8Ta)LZA(oTکb)M-m?>10ȘA^B/;XZab:s᭘w|7|fX,5YN߻ D )c6qp!FHJ0!%DB* Xc:BHUoqia$ƃ8dYlIh酊k

求37的45次方的92次方除以19的余数.最好用同余做
求37的45次方的92次方除以19的余数.最好用同余做

求37的45次方的92次方除以19的余数.最好用同余做
题:求37的45次方的92次方除以19的余数.最好用同余做.
符号说明:为方便打字,用双等号==取代三线等号≡表示同余.
题目转化: (37^45)^92 mod 19
亦即: 37^(45*92) mod 19
解一:
37^(45*92) mod 19==(-1)^(45*92) == 1
解二:
由费马小定理或欧拉(缩系计数函数)定理,37^18 ==1 mod 19
而45*92 mod 18==9*2==0 mod 18,即45*92=18k
故37^(45*92) mod 19==37^(18k)==(37^18)^k==1^k==1 mod 19

外一则:37^(45^92) mod 19
解一:37^(45^92) mod 19==(-1)^(45^92) ==-1 ==18
解二:45^92 mod 18 == 9^92==81^46==9^46==81^23==9^23==9*81^11==9^12
==81^6==9^6==81^3==9^3==9*81==9*9==81==9
即 45^92=18t+9
由费马小定理或欧拉(缩系计数函数)定理,37^18 ==1 mod 19
于是 37^(45^92) mod 19 ==37^(18t+9)==(-1)^(18t+9)==-1==18 mod 19