求下列函数的值域1.y=3χ+1.χ∈﹛-2,-1,0,1,2﹜2.y=χ²-2χ+2,χ∈[﹣1,2]3.y=- (2/(x²-2x+2))4.y=x-√(1-3x)5.y=(3x-2)/(x-1)6.y=(1+(√x)) /(1-(√x))7.y=(x²-2x+3)/(2x-3)要具体解法.(方

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 11:40:38
求下列函数的值域1.y=3χ+1.χ∈﹛-2,-1,0,1,2﹜2.y=χ²-2χ+2,χ∈[﹣1,2]3.y=- (2/(x²-2x+2))4.y=x-√(1-3x)5.y=(3x-2)/(x-1)6.y=(1+(√x)) /(1-(√x))7.y=(x²-2x+3)/(2x-3)要具体解法.(方
xV[OG+*hW{ٵ///+B^n1Uw[U"p0"4XmM`?˳O =3c;6@<Ŝ˜7#py 6R=\;hmHkq$!tj][2 Y- 9K#5Fe>ѮBΤpV7v`Blkae)PW`  H ! #h_HS l.YY|V 8\Ɲ;ڕ˳M`Ү%]A] ~Xrj6+;*No2y0 .y9e5* 2 "q-7hpdƆkd͓CwJDV0$ruF5S%$jrpVl$]5O`/ цY(#¢pm4Ȥ9i 0 6e/ !KeRځ<83:Y|ٻ ڦߩ0aJ{p˧@CB-?Ct֔Q0@ܘZr~y٬hl"x 0fq6hm]%P4CqR8SiX:uq!CȏA!6CE do׿1ߵy  jht KlĎAAXk9qev [j/XT`IG9fcO CN6Pzpx̦]R@E) ,`rbXA\.,XK$% ˜LZó+W;׷a* C͔+do .xvPr*/r>x('igrkZBdsٹټ$m&JjdnFuu-=ccd:rGF(뎙t"E3pJ'FM9Qd cTԲR#~QwŌYY\7i&vcF:$-[6rR8 uN8o?u

求下列函数的值域1.y=3χ+1.χ∈﹛-2,-1,0,1,2﹜2.y=χ²-2χ+2,χ∈[﹣1,2]3.y=- (2/(x²-2x+2))4.y=x-√(1-3x)5.y=(3x-2)/(x-1)6.y=(1+(√x)) /(1-(√x))7.y=(x²-2x+3)/(2x-3)要具体解法.(方
求下列函数的值域
1.y=3χ+1.χ∈﹛-2,-1,0,1,2﹜
2.y=χ²-2χ+2,χ∈[﹣1,2]
3.y=- (2/(x²-2x+2))
4.y=x-√(1-3x)
5.y=(3x-2)/(x-1)
6.y=(1+(√x)) /(1-(√x))
7.y=(x²-2x+3)/(2x-3)
要具体解法.(方法:①.化归法②.复合法③.数形结合法④.分家法⑤.有界性法⑥.判别式法

求下列函数的值域1.y=3χ+1.χ∈﹛-2,-1,0,1,2﹜2.y=χ²-2χ+2,χ∈[﹣1,2]3.y=- (2/(x²-2x+2))4.y=x-√(1-3x)5.y=(3x-2)/(x-1)6.y=(1+(√x)) /(1-(√x))7.y=(x²-2x+3)/(2x-3)要具体解法.(方
求下列函数的值域
1.y=3χ+1.                       χ∈﹛-2,-1,0,1,2﹜
 
y∈{-5,-2,1,4,7}
2.y=χ²-2χ+2,                 χ∈[﹣1,2]
 
y=(x-1)²+1,对称轴:x=1,y的最小值为y(1)=1;y(-1)=5;y(2)=2,故y∈[1,5].
3.y=- 2/(x²-2x+2)
 
y=-2/(x²-2x+2),去分母得yx²-2yx+2y+2=0,因为x∈R,故其判别式Δ=4y²-4y(2y+2)
=-4y²-8y=-4y(y+2)≧0,即有4y(y+2)≦0,故值域为-2≦y<0.
4.y=x-√(1-3x)
定义域:由1-3x≧0,得x≦1/3;故值域为-∞<y≦1/3
5.y=(3x-2)/(x-1)
y=3+1/(x-1);x→1- limy=-∞;x→1+limy=+∞;x→±∞limy=3
故值域为(-∞,3)∪(3,+∞).
6.y=(1+√x)/(1-√x)
 
定义域:x≧0,且x≠1;y=-1+2/(1-√x);y(0)=1;x→1- limy=+∞;x→1+limy=-∞;
x→+∞limy=-1;故值域为y∈(-∞,-1)∪[1,+∞)
7.y=(x²-2x+3)/(2x-3)
 
定义域:x≠3/2;令y′=[(2x-3)(2x-2)-2(x²-2x+3)]/(2x-3)²=2x(x-3)/(2x-3)²=0
得驻点x₁=0.x₂=3;x₁是极大点,x₂是极小点;极大值y(0)=-1;极小值y(3)=2;
值域:(-∞,-1]∪[2,+∞),垂直渐近线:x=3/2;斜渐近线:y=(1/2)x-1/4,其图像如图.