y=√3sin(2x-pai/6)+2sin^2(x-pai/12)的最小正周期

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 19:38:47
y=√3sin(2x-pai/6)+2sin^2(x-pai/12)的最小正周期
x)}1˸83OèB 1SLSȍ3Ҁ 4jy6gk?ٜ6IEj/: uF`*QTiBEi4 PD HЬFu6<ٽ4(hd{F 1p4

y=√3sin(2x-pai/6)+2sin^2(x-pai/12)的最小正周期
y=√3sin(2x-pai/6)+2sin^2(x-pai/12)的最小正周期

y=√3sin(2x-pai/6)+2sin^2(x-pai/12)的最小正周期
y=√3sin(2x-π/6)+2[1-cos(2x-π/6)]/2
=√3sin(2x-π/6)-cos(2x-π/6)+1
=2[√3/2*sin(2x-π/6)-1/2*cos(2x-π/6)]+1
=2[sin(2x-π/6)cosπ/6-cos(2x-π/6)sinπ/6]+1
=2sin(2x-π/6-π/6)+1
=2sin(2x-π/3)+1
所以T=2π/2=π