如果函数f(x),g(x)可导,且f'(x)=xg'(x)+g(x),求证:f(x)-xg(x)=f(0)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 17:38:38
如果函数f(x),g(x)可导,且f'(x)=xg'(x)+g(x),求证:f(x)-xg(x)=f(0)
x){ټ9O>!MBS'H<_t'; J$lcӋ֭٦ih$S4;jNTGjg Ov/MP l @n ,3

如果函数f(x),g(x)可导,且f'(x)=xg'(x)+g(x),求证:f(x)-xg(x)=f(0)
如果函数f(x),g(x)可导,且f'(x)=xg'(x)+g(x),求证:f(x)-xg(x)=f(0)

如果函数f(x),g(x)可导,且f'(x)=xg'(x)+g(x),求证:f(x)-xg(x)=f(0)
(xg(x))'=xg'(x)+g(x),又f'(x)=xg'(x)+g(x)
所以f(x)=xg(x)
所以f(x)-xg(x)=0

如果函数f(x),g(x)可导,且f'(x)=xg'(x)+g(x),求证:f(x)-xg(x)=f(0) 设f(x)、g(x)都是可导函数,且|f'(x)|a时,|f(x)-f(a)||f'(x)| 设f(x)、g(x)都是可导函数,且|f'(x)| 设f(x)、g(x)是R上的可导函数,f'(x)、g'(x)分别为f(x),g(x)的导函数,且f'(x)g(x)+f(x)g'(x)A.F(X)G(B)>F(B)G(X)B.F(X)G(A)>F(A)G(X)C.F(X)G(X)>F(B)G(B)D.F(X)G(X)>F(A)G(A) 设f(x),g(x)是定义域为R的恒大于0的可导函数,且f'(x)g(x)-f(x)g'(x) 设f(x),g(x)是恒大于零的可导函数,且f`(x)g(x)-f(x)g`(x)求解答过程 设f(x),g(x)是恒大于零的可导函数,且f`(x)g(x)-f(x)g`(x) 函数求导数已知f(x)与g(x)均为可导函数,如果f(x)=g(t+x),则f'(x)=请写过程! 设f(x)、g(x)是R上的可导函数,f'(x)、g'(x)分别为f(x),g(x)的导函数,且f'(x)g(x)+f(x)g'(x)F(B)G(B)D.F(X)G(X)>F(A)G(A) 微分中值定理的一道题设f(x)和g(x)都是可导函数,且|f'(x)| 证明如果两个可导函数f(x)和g(x),满足f(x)=0,g(0)=0,且f'(0)及g'(0)存在,g'(0)不等于0.那么lim x趋近于0那么lim x趋近于0 f(x)/g(x)=f'(0)/g'(0) 证明如果两个可导函数f(x)与g(x),满足f(0)=0,g(x)=0且它们导数存在,g(x)不为0那么f(x)/g(x)的极限为f(x)导数/g(x)导数 g(x)=f(x)/x x≠0 g(x)=f′(0) x=0 知道f(x)有二阶连续导数 f(0)=0 证g可导且导函数连续g(x)=f(x)/x x≠0 g(x)=f′(0) x=0 知道f(x)有二阶连续导数 f(0)=0 证g可导且导函数连续 高数题 设函数f(x)=g(x)/x,x≠0;0,x=0,其中g(x)可导,且在x=0处二阶导数g'...高数题设函数f(x)=g(x)/x,x≠0;0,x=0,其中g(x)可导,且在x=0处二阶导数g''(0)存在,且g(0)=g'(0)=0,试求f'(x),讨论f'(x)的连 f(x)与g(x)是定义在R上的两个可导函数,若f(x),g(x)满足f'(x)=g'(x),则f(x)与g(x)满足A.f(x)=g(x)B.f(x)-g(x)为常数函数C.f(x)=g(x)=0D.f(x)+g(x)为常数函数 设f(x),g(x)是定义在[a,b]上的可导函数,且f`(x)>g`(x),令F(x)=f(x)-g(x),则F(x)=f(x)-g(x),则F(x)在[a,b]上的最大值为 关于反函数积分问题f(x),存在反函数g(x),且f(x)可积,问g(x)是否可积,如果可积,能否用f(x)、∫f(x)dx与g(x)表示出来? 设f(x)与g(x)均为可导函数,且有g(x)=f(x+c),其中c为常数,利用倒数的定义证明g’(x)=f’(x+c).