已知M是以点C为圆心的圆(x+1)2+y2=8上的动点,定点D(1,0),点P在DM上,点N在CM上,且满足DM向量=2DP向量,NP向量*DM向量=0,动点N的轨迹为曲线E.(1) 求曲线E的方程(2) 线段AB是曲线E的长为2的动弦

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:10:51
已知M是以点C为圆心的圆(x+1)2+y2=8上的动点,定点D(1,0),点P在DM上,点N在CM上,且满足DM向量=2DP向量,NP向量*DM向量=0,动点N的轨迹为曲线E.(1) 求曲线E的方程(2) 线段AB是曲线E的长为2的动弦
xVKo"G+> Q+ųmrcKZ%KZ/Ǝ mq7BXUU]U_W5,yFV-X[Uա\!d^vߋ t ?\CQ?>hl* 5]P6J'qWioߎ& ݷV,,]"S%bFT< Hwp6k[QۺށH"_+@5VW\z?Wr `%=~ݼDf+.JQbsza?;# e%gK(;@xlnkf+au3fJuN fU8dVnlDSmK.0 "zC͚Ժ=mP |KއVKCv|c}xvC{ϭ ړM2f"XJRR,0'*_"vias^O*j(c6J( rnx2."]ؐu@11Ww)S| J#ZE _mTL&QRM{)r 0h0V4jEV\3{'O'C QHFf)>]yr$sA*V@v !?L)0 \D"& |e@P[<cµ3R{ELPo8eoF!&ݷ<#ker|S2]vUI l]\^q';8 I=| %/Q HزzXpKLxHSWE#ۏTXFRmS'Ӽ>#G,F<bTŵ/NUF!%o$&m!&Q-ZffzAJZN v^֠T/yyb7P+

已知M是以点C为圆心的圆(x+1)2+y2=8上的动点,定点D(1,0),点P在DM上,点N在CM上,且满足DM向量=2DP向量,NP向量*DM向量=0,动点N的轨迹为曲线E.(1) 求曲线E的方程(2) 线段AB是曲线E的长为2的动弦
已知M是以点C为圆心的圆(x+1)2+y2=8上的动点,定点D(1,0),点P在DM上,点N在CM上,且满足DM向量=2DP向量,NP向量*DM向量=0,动点N的轨迹为曲线E.
(1) 求曲线E的方程
(2) 线段AB是曲线E的长为2的动弦,O为坐标原点,求三角形AOB的面积S的取值范围.

已知M是以点C为圆心的圆(x+1)2+y2=8上的动点,定点D(1,0),点P在DM上,点N在CM上,且满足DM向量=2DP向量,NP向量*DM向量=0,动点N的轨迹为曲线E.(1) 求曲线E的方程(2) 线段AB是曲线E的长为2的动弦
图形我就不给你画了,很简单,看下面的求解过程时你自己画个图更容易明白.
(1):
首先连接DN.由于向量DM=2向量DP,即P为DM中点;又向量NP*向量DM=0,即PN垂直于DM.于是PN垂直平分DM,所以DN=MN.所以NC+ND=NC+NM=MC=R=根号8(半径).那么显然点N在一个以C/D两点为焦点的椭圆上.
NC+ND=2a=根号8 a=根号2
焦点c=1,则b=根号下(a^2-c^2)=1
所以曲线E的方程为x^2/2+y^2/1=1
(2):
这一问有点烦人.你需要仔细考虑一下,选择一个简化的办法.我采用如下的解法:
思路:要求三角形AOB面积其实就是要求原点到直线AB的距离(三角形的高).于是问题转为为求原点到直线AB的距离
设A(m1,n1),B(m2,n2)
那么有如下三个关系式
m1^2/2+n1^2=1;
m2^2/2+n2^2=1;
(m1-m2)^2+(n1-n2)^2=4.
直线AB的发方程可以根据A(m1,n1),B(m2,n2)写出来.
然后原点到直线AB的距离d可以根据直线AB的方程简单写出.
上面三个关系式是个未知数,可以求出(m1+m2)(m1-m2)(n1+n2)(n1-n2)是个四个表达式的关系,带入到直线d之中去,就可以求出d的范围.
具体演算我不给你写了吧,自己按照这个思路体会一遍,比直接看我写的更能够提高.
最后的结果为[0,根号2除以2]
其实,还有个几何解法,说说不知道你能不能理解了.
由于弦长刚好等于短轴长,于是最小的面积就是AOB共线时的,面积为0;
最大面积显然是弦AB垂直于y轴时情形.此时口算可知,A坐标为(1,根号2/2)B坐标为(-1,根号2/2)或者A坐标为(1,负根号2/2)B坐标为(-1,负根号2/2).这时对应面积为1/2*2*根号2/2=根号2/2.为最大值
所以面积范围为[0,根号2/2]
额~考虑到说的是三角形,所以面积应该为(0,根号2/2],左开右闭的形式,上面那个也是如此

如图,点M(4,0),以点M为圆心、2为半径的圆与x轴交与点A、B.已知抛物线y=1/6x²+bx+c上如图,点M(4,0),以点M为圆心、2为半径的圆与x轴交与点A、B.已知抛物线y=1/6x²+bx+c过点A和点B,与y轴交 圆的方程问题已知点p(-2,-3)和以Q圆为圆心的圆(x-4)平方+(y-2)平方=9(1)求以PQ为直径的圆C的方程(2)设以Q为圆心的圆和以C为圆心的圆的两个交点为A,B,直线PA,PB是以Q为圆心的圆的切线吗?(3 已知M是以点C为圆心的圆(x+1)^2+y^2=8上的动点,定点D(1,0).点P在DM上,点N在CM上,且满足向量DM=2向量DP,向量NP*向量DM=0.动点N的轨迹为曲线E.(1)求曲线E的方程(2)线段AB是曲线E的长为2的动弦,O为坐 几何 (12 20:14:23)已知M是以点C为圆心的圆(x+1)^2+y^2=8上的动点,定点D(1,0),点P在DM上,且满足向量DM=2向量DP,向量N[P*向量DM=0,动点N的轨迹为曲线E1.求曲线E的方程2.线段AB是曲线E的长为2的动弦,O 已知直线L:x+y-9=0和圆M:2x²+2y²-8x-8y-1=0,点 A(4,y0)在直线L上,B,C为圆M上两点在三角形ABC中,∠BCA=45°,AB过圆心M,则圆心M到直线AC的距离为 (^2是平方)已知动圆C过点A(-2,0),且与圆M:(x-2)^2+y^2=64相内切.求动圆的圆心C的轨迹方程定圆M圆心M(2,0),半径r=8,因为动圆C与定圆M内切,且动圆C过定点A(-2,0)|MA|+|MB|=8.所以动圆心C轨迹是以B、A 圆的标准方程部分.已知圆心为C的圆C,经过点A(1,1),B(2,-2),且圆心在x-y+1=0上,求圆心为C的标准方程. 已知点M(2,1)和直线l:x-y=5求以M为圆心,且与直线l相切的圆M的方程 直线l:(m+1)x+2y-4m-4=0 (m为实数)恒过定点c 圆C是以点C为圆心 半径为4的圆...①求圆C的方程②设圆M的方程为(x-4-7COSa)2+(y-7sina)2=1过圆M上任意一点P分别做圆C的两条切线PE.PF 切点为E.F 求向量CE点乘向 已知A,B是圆O:x^2+y^2=16上的两点,且|AB|=6,若以AB的长为直径的圆M恰好经过点C(1,-1),则圆心M的轨迹方如题 答案是(x-1)^2+(y+1)^2=9 是圆心为C点半径为3的圆,可我总感觉不对,如题可解m点距圆心距 点M(4,0)以点M为圆心、2为半径的圆与x轴交与点A,B,已知抛物线y=1/6x^2+bx+c过点A和B,与y轴交与点C点Q(8,m)在抛物线y=1/6x^2+bx+c上,点P为此抛物线对称轴上的一个动点,求PQ+PB的最小值CE是过点C的 已知圆C与两圆:x²+(y+4)²=1,x²+(y-2)²=1外切,圆C的圆心轨迹方程为L,设L上的点与点M(x,y)的距离的的最小值为m,F(0,1)与点M的距离为n(1)求圆C的圆心轨迹L的方程(2)求满足条 已知圆C经过点A(0,3)和 点B(3,2),且圆心C在直线y=x上.(1)求圆C的方程(2)若已知圆C经过点A(0,3)和 点B(3,2),且圆心C在直线y=x上.(1)求圆C的方程(2)若直线y=2x+m被圆C所截得弦长为4,求实 已知P在圆C(x+1)^2+y^2=16上为一动点,圆心为A,定点B(1,0)与P连线的中垂线交线段AP于M,求M的轨迹方程 已知定圆A:(X+√3)^2+y^2=16,圆心为A,动圆M过点B(√3,0)且和圆A相切,动圆的圆心M的轨迹记为C(1)求曲线的方程(2)若点P(X.,y.)为曲线C上的一点,探究直线L:X.x + 4y.y-4=0与曲线C是否存在交点? 已知圆C与两圆x^2+(y+6)^2=1,x^2+(y-2)^2=1外切,圆C的圆心的轨迹方程为L,设L上的点与点M(x,y)的距离的最小值为m,点F(0,1)与M点的距离为n 求轨迹方程L:求满足m=n的点M的轨迹Q的方程 请您帮帮忙,已知N(根号5,0),P是圆M:(x+根号5)^2+y^2=36(M为圆心)上一动点,线段PN的已知N(根号5,0),P是圆M:(x+根号5)^2+y^2=36(M为圆心)上一动点,线段PN的垂直平分线L交PM于Q点.求(1)求点Q的轨迹C的方程( 已知点M(a,b)(ab不等于0)是圆x^2+y^2=r^2内一点,直线l是以M为中点的弦所在的直线,直线m的方程式ax+by=r^2关于m与圆C相离的原因:圆C的圆心为(0,0),求其到直线m的距离d=r^2/√(a^2+b^2)又因为点m在圆内,所