(b²-a²)x²+a²x-a²b²=0怎样推导得到(a-x)[(b²-a²)x+ab²]=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 01:47:24
(b²-a²)x²+a²x-a²b²=0怎样推导得到(a-x)[(b²-a²)x+ab²]=0
(b²-a²)x²+a²x-a²b²=0怎样推导得到(a-x)[(b²-a²)x+ab²]=0
(b²-a²)x²+a²x-a²b²=0怎样推导得到(a-x)[(b²-a²)x+ab²]=0
首先,原题中第二项应该为a^3*x
(b^2-a^2)*x^2 + a^3*x -a^2*b^2
=b^2*x^2 - a^2*x^2 +a^2*x - a^2*b^2
=(b^2*x^2 - a^2*b^2) - (a^2*x^2 - a^3*x)
=b^2(x^2 - a^2) - a^2*x*(x-a)
=(x-a)[b^2*x + a*b^2 - a^2*x ]
=(x-a)[(b^2 - a^2)x + a*b^2]
搞定,希望有所帮助~
这种推导要先猜根
怎么猜呢?
一般来说含有参数的方程的跟很有可能是参数本身,所以应该先猜参数
也就是说本题猜a或者b为跟,将x=a或x=b带进方程验证
发现a为根,然后提出(a-x)既可以推倒出之后的式子
直接因式分解啊,就出来了
如果我说你的题目写错了 你信吗?
公式法:该方程已经是一元二次方程的一般形式,然后计算判别式△=b²-4ac的值,当b²-4ac≥0时,把各项系数a, b, c的值代入求根公式x=[-b±√(b²-4ac)]/(2a)] , (b²-4ac≥0)就可得到方程的根。
然后整个方程jiu就可以写成 (x-“一个根”)·(x-“另一个根”) = 0...
全部展开
公式法:该方程已经是一元二次方程的一般形式,然后计算判别式△=b²-4ac的值,当b²-4ac≥0时,把各项系数a, b, c的值代入求根公式x=[-b±√(b²-4ac)]/(2a)] , (b²-4ac≥0)就可得到方程的根。
然后整个方程jiu就可以写成 (x-“一个根”)·(x-“另一个根”) = 0
收起
你的题目中x的系数不是平方应该是立方;即修改后是:
(b²-a²)x²+a³x-a²b²=0怎样推导得到(a-x)[(b²-a²)x+ab²]=0
(b²-a²)x²+a³x-a²b²=0可化为:
(b²...
全部展开
你的题目中x的系数不是平方应该是立方;即修改后是:
(b²-a²)x²+a³x-a²b²=0怎样推导得到(a-x)[(b²-a²)x+ab²]=0
(b²-a²)x²+a³x-a²b²=0可化为:
(b²-a²)/ax²+a²x-ab²=0
[(1/a)x-1][(b²-a²)x+ab²]=0两边同乘以 -a得:
(-x+a)[(b²-a²)x+ab²]=0即:
(a-x)[(b²-a²)x+ab²]=0
收起
同学,这类的知道结果的推导可以把两头同时展开,变到相同的形式就可以用等号连接了。就像走迷宫,从头从尾分别走是最好的方法。
祝你的数学越学越棒!
你要先知道方程的根才能分解为(a-x)[(b²-a²)x+ab²]=0这个样子。 现在假设你已经知道当X=a时为0 那么过程如下