从lim(n→∞) (1/n)[1/(3 + 1/n) + 1/(3 + 2/n) + ...+ 1/(3 + n/n)] 怎么变为∫(0→1) dx/(3 + x)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 00:31:34
xn1_eR"*ޱ'AI7!̏L;AT]I`Q$6mAU]T*HAD44bMWڝbkple6>myMy&xu:VʿWܵ^z|<ƗMpf^v#%b[hsv>VquvQ}\^=MjxRM"kl0(R"%QҚD{tiY@+(3q9BX[ .uBROo˲6Wncg>}mm
M.h:1
b(hb8@_,`cCΤ 2!)^ ,,g$"@Ѳ
从lim(n→∞) (1/n)[1/(3 + 1/n) + 1/(3 + 2/n) + ...+ 1/(3 + n/n)] 怎么变为∫(0→1) dx/(3 + x)
从lim(n→∞) (1/n)[1/(3 + 1/n) + 1/(3 + 2/n) + ...+ 1/(3 + n/n)] 怎么变为∫(0→1) dx/(3 + x)
从lim(n→∞) (1/n)[1/(3 + 1/n) + 1/(3 + 2/n) + ...+ 1/(3 + n/n)] 怎么变为∫(0→1) dx/(3 + x)
见图片,费了很大劲,请采纳.写得很清楚了.
http://hiphotos.baidu.com/qingshi0902/pic/item/15cb0418b3de9c8244497b336c81800a18d84387.jpg
求lim n→∞ (1+2/n)^n+3
lim(n→∞)[1-(2n/n+3)]
lim(n→∞)(2n-1/n+3)
lim (n!+(n-1)!+(n-2)!+(N-3)!+⋯..+2!+1)/n!其中n→∞
lim(n→∞)[1/(3n+1)+1/(3n+2)+~1/(3n+n)]
求极限lim [ 2^(n+1)+3^(n+1)]/2^n+3^n (n→∞)
计算lim(n→∞)(1^n+2^n+3^n)^(1/n)
lim n →∞ (1^n+3^n+2^n)^1/n,求数列极限
lim(n→∞)(3n^3-2n+1)/n^3+n^2 快
求极限lim(x→∞)(1/n+2/n+3/n..+n/n)
从lim(n→∞) (1/n)[1/(3 + 1/n) + 1/(3 + 2/n) + ...+ 1/(3 + n/n)] 怎么变为∫(0→1) dx/(3 + x)
用数列极限证明lim(n→∞)(n^-2)/(n^+n+1)=1中证明如下:lim(n→∞)3n+1/5n-4
利用定积分定义求lim(n→∞)(1/n*[(2n-i)/n]^1/3) i从1到n
lim[n→∞] (x^n+1)^(1/n)
求 lim (n→+∞) n^( 1/n)的极限
lim(arctan n)^1/n (n→∞)求极值
lim(1/n)sin n (n→∞)
lim n→∞ n^(3/2)* (n+1)^(1/2)* (1-cos(π/n))=?