从lim(n→∞) (1/n)[1/(3 + 1/n) + 1/(3 + 2/n) + ...+ 1/(3 + n/n)] 怎么变为∫(0→1) dx/(3 + x)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 00:31:34
从lim(n→∞) (1/n)[1/(3 + 1/n) + 1/(3 + 2/n) + ...+ 1/(3 + n/n)] 怎么变为∫(0→1) dx/(3 + x)
xn1_eR"*ޱ'AI7!̏L;AT]I`Q$6mAU]T*HAD44bMWڝbkple6>myMy&xu:VʿWܵ^z|<ƗMpf^v#%b[hsv>VquvQ}\^=MjxRM"kl0(R"%QҚD{tiY@+(3q9BX[ .uBROo˲6Wncg>}mm M.h:1 b(hb8@_,`cCΤ 2!)^ ,,g$"@Ѳ

从lim(n→∞) (1/n)[1/(3 + 1/n) + 1/(3 + 2/n) + ...+ 1/(3 + n/n)] 怎么变为∫(0→1) dx/(3 + x)
从lim(n→∞) (1/n)[1/(3 + 1/n) + 1/(3 + 2/n) + ...+ 1/(3 + n/n)] 怎么变为∫(0→1) dx/(3 + x)

从lim(n→∞) (1/n)[1/(3 + 1/n) + 1/(3 + 2/n) + ...+ 1/(3 + n/n)] 怎么变为∫(0→1) dx/(3 + x)

见图片,费了很大劲,请采纳.写得很清楚了.

http://hiphotos.baidu.com/qingshi0902/pic/item/15cb0418b3de9c8244497b336c81800a18d84387.jpg