f(x)=-x2+6x-3(0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 21:35:32
f(x)=-x2+6x-3(0
x)KӨдխ0650I*/Y+tOO'L|[ϗoxw˓Uak 7:&Ovt=mxh }Ouz9}ku@2`˩uu6<ٽigS7

f(x)=-x2+6x-3(0
f(x)=-x2+6x-3(0

f(x)=-x2+6x-3(0
抛物线开口向下,对称轴为:x=3
f(x)在[0,4)上先增后减,且减区间短,增区间长,所以函数的最大值f(max)=f(3)=6
最小值为f(0)=-3
所以原函数的值域为:
[-3,6]

f(x)=-(x^2-6x+3)=-(x^2-6x+9-6)=-(x-3)^2+6
f(3)=6
f(0)=-3
0<=x<4 -3<=f(x)<=6