在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈N*) (1)求a1,a2,a3及b1,b2,b3,由此猜测{an},{bn}的通项公式,并证明你的结论; (2)证明:1/(a1+b1)+1/(a2+b2)+…1/(an+bn
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 16:54:47
xRMN@Jvb3
G&3]'iAE
R~bBft+J՛}3{{cfҲi5N)ϢSƳu)N%pk#:VVwl>`;Nk1z_Y^$Q(A4!HrRG[Ar(2zWk/G#m1z-l BzEwU)θɎS7= ^d hUTF
在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈N*) (1)求a1,a2,a3及b1,b2,b3,由此猜测{an},{bn}的通项公式,并证明你的结论; (2)证明:1/(a1+b1)+1/(a2+b2)+…1/(an+bn
在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈N*)
(1)求a1,a2,a3及b1,b2,b3,由此猜测{an},{bn}的通项公式,并证明你的结论;
(2)证明:1/(a1+b1)+1/(a2+b2)+…1/(an+bn)<5/12
这个问题知道上有,可是只有第一步的答案,
在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈N*) (1)求a1,a2,a3及b1,b2,b3,由此猜测{an},{bn}的通项公式,并证明你的结论; (2)证明:1/(a1+b1)+1/(a2+b2)+…1/(an+bn
题目有问题吧
按题目条件有
2bn = 2an + 1 ,an^2 + 2an + 1 = bn^2 + bn
a1 = 2 ,b1 = 4无论代到哪道式子都不成立啊.
在数列{an}和{bn}中,an>0,bn>0,且an,bn,a(n+1)成等差数列,bn,a(n+1),b(n+1)成等比数列,a1=1,b1=2,求an/bn.
求做一题数列题.……已知在等差数列{an}中,|a2-a5|=6,a1+a2+a3=12.(1)求数列{an}的通项公式.(2)若数列{an}是递增数列,数列{bn}满足3b(n+1)=bn,且b2=1/9,求数列{bn}通项公式及数列{an.bn
在数列{an}中,an=4n-5/2,a1+a2+.+an=an方+bn,n属于自然数,a、b为常数.则a*b等于
在数列{An},{Bn}中,已知An大于0,Bn大于0,且An,Bn,An+1成等差,Bn,An+1,Bn+1成等比,求An/Bn?A1=1,B1=2
在数列{An},{Bn}中,已知An大于0,Bn大于0,且An,Bn,An+1成等差,Bn,An+1,Bn+1成等比,求An/Bn?A1=1,B1=2在数列{An},{Bn}中,已知An大于0,Bn大于0,且An,Bn,An+1成等差,Bn,An+1,Bn+1成等比,A1=1,B1=2求An/Bn?
在数列{an}中,an=4n-5/2,a1+a2+···+an=an²+bn,其中a,b为常数,则ab=?
在数列an中,已知a1=2,an+1=2an/an +1,令bn=an(an -1).求证bn的前n项和
急~求一道高三数学题在数列{an}和{bn}中,满足a1=2,b1=1,a(n+1)=2an-6bn,b(n+1)=an+7bn. 求数列an和bn的通项公式an和bn;求数列{nbn}的前n项和
数列an 中 a1=4.an=(3an-1+2)/(an-1+4) 数列bn中,bn=(an-1)/(an+2) ,求bn
数列an 中 a1=4.an=(3an-1+2)/(an-1+4) 数列bn中,bn=(an-1)/(an+2) ,求bn
我不是他舅 快帮我回答在数列{an}中a1=1,a(n+1)=(an)+3,在数列{bn}中,bn=2^(an),在数列{bn}中求S4.
数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈N*)在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈N*)求出{an},{bn}的通项公式后证明:1/(a1+b1
在等比An数列中,a1=1/2,a4=4,记Bn=An^2,证明数列Bn是等比数列
已知在等比数列{an} 中,a1=8,bn=log2^an(n属于N星号)求证数列{bn}是等差数列已知在等比数列{an} 中,a1=8,bn=log2^an(n属于N星号) (1)求证数列{bn}是等差数列.(2)如果数列{an}的公比q=1/4,求数列{bn}的前
在数列{an}中,a1=-1,a2=0,an+1+4an-1=4an(n≥2),数列{bn}满足bn=an+1-2an.试证数列{bn}为等比数列,并求数列{an},{bn}的通项公式;求数列{an}的前n项和Sn.注:题中n+1、n-1、n为a或b右下角角标
在数列{an},{bn}中,a1=2,b1=4,且an,bn,a(n+1)成等差数列,bn,a(n+1),b(n+1)成等比数列(n€n*)1)求a2,a3,a4及b1,b2,b3,由此猜测{an},{bn}的通项公式;2)证明:1/(a1+b1)+1/(a2+b2)+1/(a3+b3)+~+1/(an+bn)
问问在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列通项公式{an}
在数列{an}中,a1=1,An+1=1-1/4an,bn=1/2an-1,其中n∈N*求证{bn}为等差数列bn=1/2an-1中1在an后面