定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意实数x,y有 f(x+y)=f(x)·f(y)(1).证明当x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 00:12:19
定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意实数x,y有 f(x+y)=f(x)·f(y)(1).证明当x
xVn"G~9Exfr#J-ZB`o26k06`/56k?aXJ$N~Tw3GHQ"e9TUW}Uu5%/P'? m(>)4^R}D`[DqH-Zz,"-,vUÔl`5r]Qdx9Fgc>̒ߣ>J{z$!p򀁘,OtMݒ򝀷o- 6O[Rm3IPb= MB̨ǡ 3Rm}G+ MfB.ı]JgC\&R nfYzŶ4ʌWlsD|!n$d|ka XAN[@<97tIuj\t1Y$=[n CQkY99vXS%/"ED{Y՘#\O)=@"hmp, o5 )9RYʄ^&t<(^U:.I挫sF˧#>[j^]@+RKE4/tuZnPy#y0@VN2M3 Fl|*t쓭0pq؅+&uGCz[18`ǐܜBM Zm\;7] udbN\FXPH!ɩy'U\k9Խm~Jdou,ww|c'*bP͠X|߽y#W"B -wGf"E_VUO8 p.b`xw ]$8{.9sNBo8֒f3N24 (;QȐ'l܉?-VsmCs$K(5J#ps_8~>p|Ou݃peF } /(uGZf\q'g/~:$i'C 8 W!-ÚCX|!*'z<%ĭ\#_F

定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意实数x,y有 f(x+y)=f(x)·f(y)(1).证明当x
定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意实数x,y有 f(x+y)=f(x)·f(y)
(1).证明当x

定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意实数x,y有 f(x+y)=f(x)·f(y)(1).证明当x
证明:令x=0 y=0则f(0+0)=f(0)² 即f(0)-f(0)²=0因为f(0)不等于0所以f(0)=1
又令y=-x 则有f(x-x)=f(x)×f(-x)即f(0)=f(x)×f(-x) 即1=f(x)×f(-x) 所以f(x)与f(-x)互为倒数 即f(x)=1/f(-x)因为当x>0时,f(x)>1所以当x小于0时01所以1-f(X2-X1)

v

1.
由:f(0+0)=f(0)*f(0)
即: f(0)=[f(0)]^2,
解此方程得:f(0)=1,或f(0)=0.
但已知:f(0)不=0,故有:f(0)=1.
对于x<0,有:-x>0
1=f(0)=f(x-x)=f(x)*f(-x)
即:f(x)*f(-x)=1,
由于f(-x)>1,故:
x<0时, 0

全部展开

1.
由:f(0+0)=f(0)*f(0)
即: f(0)=[f(0)]^2,
解此方程得:f(0)=1,或f(0)=0.
但已知:f(0)不=0,故有:f(0)=1.
对于x<0,有:-x>0
1=f(0)=f(x-x)=f(x)*f(-x)
即:f(x)*f(-x)=1,
由于f(-x)>1,故:
x<0时, 02.
对于任意x1,x2: x10
有:f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)
=f(x2-x1) *f(x1)-f(x1)
=f(x1)*[f(x2-x1)-1] ***
由于(1)对任何x,f(x)>0, 故,上式中f(x1)>0,
(2)对任x>0,f(x)>1,故上式中:
f(x2-x1)>1.
故*** 式>0
即:f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)
=f(x2-x1) *f(x1)-f(x1)
=f(x1)*[f(x2-x1)-1]>0
即:f(x2)-f(x1)>0
即f(x2)>f(x1) 当x2>x1时恒成立.
即f(x)为增函数.
3.若f(x^2)*f(2x-x^2+2)>1
即:f(x^2+2x-x^2+2)>1
即:x^2+2x-x^2+2)>0
即:2x+2>0,即: x>-1.

收起

在此之后,记者打电话与工作人员按照相应的电话,她听到此事的电话Linie市教育局部,但没有发出岚山教育署强制学生购买报纸公告,记者,有家长,学校要求孩子们上学的文件,否则不得进入大门的问题,ugg boots sale,工作人员拒绝,ugg classic crochet sale。有记者叫Linie城市,第四实验小学和中学到另一个电话线,两位老师谁接电话,不希望直接回答记者问,但说,winter...

全部展开

在此之后,记者打电话与工作人员按照相应的电话,她听到此事的电话Linie市教育局部,但没有发出岚山教育署强制学生购买报纸公告,记者,有家长,学校要求孩子们上学的文件,否则不得进入大门的问题,ugg boots sale,工作人员拒绝,ugg classic crochet sale。有记者叫Linie城市,第四实验小学和中学到另一个电话线,两位老师谁接电话,不希望直接回答记者问,但说,winter 2010 ugg boots,这个问题不明确。
据知情人士爆料说,他接触的同一天岚山教育部教育,小企业经营者说,这只是猜测,ugg 2010 fall collection,ugg argyle boots on sale,ugg classic tall fancy sale,他们发布的信息有关调查。

收起

定义在R上的函数f(x),对任意x,y∈R,豆油:f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0,判断f(x)的奇偶性 已知f(x)是定义在R上的函数,对任意的x,y∈R,都有f(x+y)+f(x-y)=2f(x)f(y),已知f(x)是定义在R上的函数,对任意的x,y∈R,都有f(x+y)+f(x-y)=2f(x)f(y),且f(0)≠0(1):f(0)=1(2):判断函数的奇偶性 定义在R上的函数f(x),对任意的x、y∈R,有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0,求证f(x)是奇函数 定义在R上的函数f(x),对任意的x、y∈R,有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0,求证f(x)为偶函数 已知定义在R上的函数y=f(x),对任意x,y∈R,f(x)≠0,有f(x+y)=f(x)f(y)1.求证f(x)>0 2.求证f(x-y)=f(x)/f(y)3.若f(x)为R上的严格单调函数,且f(1)=1/2,解函数4f(5x)=f(3x) f(x)是定义于R上的函数,满足两个条件f(x+y)=f(x)f(1-y)+f(1-x)f(y).)f(x)是定义于R上的函数,满足两个条件:(1)f(x+y)=f(x)f(1-y)+f(1-x)f(y) f(x)在[0,1]上单调递增; 问:(1)f(1)=1; (2)f(x)的奇偶性 (3)f( 已知定义在R上的单调函数y=f(x),当x1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y) 求f(0)已知定义在R上的单调函数y=f(x),当x1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y)(1) 求f(0);并写出适合条件的函数f(x)的 一题高一的数学题目.定义在R上的函数f(x)对一切实数x,y满足f(x)≠0,且f(x+y)=f(x)f(y),已知函数f(x)在(-∞,0)上的值域为(1,+∞),求函数f(x)在R上的值域. 已知f(x)是定义在R上的函数,对任意的x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时有f(x)>0 ⑴判断函数奇偶性已知f(x)是定义在R上的函数,对任意的x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时有f(x)>0⑴判断函数 f(x)是定义于R上的函数,满足两个条件f(x+y)=f(x)f(1-y)+f(1-x)f(y)...f(x)是定义于R上的函数,满足两个条件:(1)f(x+y)=f(x)f(1-y)+f(1-x)f(y)(2)f(x)在[0,1]上单调递增;问:(1)f(1)=1;(2)f(x)的奇偶性(3 设F(x)是定义在R上的函数对任意X,Y属于R,恒有F(X+Y)=f(X)+F(Y) (1)求F(0)的值 (2)求证F(x)为奇函数设F(x)是定义在R上的函数对任意X,Y属于R,恒有F(X+Y)=f(X)+F(Y) (1)求F(0)的值 (2)求证F(x)为奇 定义在R上的函数f(x)对一切实数x,y满足:f(x)≠0,且f(x+y)=f(x)*f(y),且当x1求证:f(x)在x∈R上是减函数 f(x)是定义在R上的函数,对任意x,y∈R,f(x+y)+f(x-y)=2f(x)f(y)恒成立,且f(0)≠0求f(x)的奇偶性 定义在实数集R上的函数f(x),对于任意x,y∈R,有f(x+y)+f(x-y)=2f(x)f(y),且f(0)≠0.1 判断f(x)的奇偶性. 定义在R上的函数f(x)满足f(x+y)=f(x)-f(y),那么此函数的奇偶性是( ). 拜托各位了! 高一上学期关于函数的数学题:定义在R上的函数f(x),对任意的函数,x,y∈R,有f(x+y)+f(x-y)=2f(x)f(y) ,且f(0)≠0,.(1) 求证:f(0)=1 (2)求证:f(x)是偶函数.(要求:解题思路清晰) 已知定义在R上的函数f(x)满足:(1)对任意的x,y属于R,都有f(xy)=f(x)+f(y);已知定义在R上的函数f(x)满足:(1)对任意的x,y属于R,都有f(xy)=f(x)+f(y);(2)当x>1是,f(x)>0.求证:(1)f(1)=0;(2)对任意的x属于R,都有f(1 已知定义在R上得函数f(x)满足f(xy)=f(x)+f(y).(1)求证f(1)=f(-1)=0