概率论 关于边缘密度函数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 11:46:50
概率论 关于边缘密度函数
xQQoP+d e{oKKіioQePWƇ`CB4QKn0-eO/@bb%;9d0> [i^|Ix [4~N_em\M:u"d\F9o=E{8ĥ 0J<]jR*UB|? ppLfFHG0KǙ:Xbۣͻn vqqhٺKl]=oRKK|?.RQA~~6Z_ %Ǻx+$d]Y &ӝ')q,dF&sdЖc}gͰmT:|/iK[FI7;,`

概率论 关于边缘密度函数
概率论 关于边缘密度函数

概率论 关于边缘密度函数
第一题
f(x)=∫【x,1/x】1/(2x^2*y)dy=1/(2x^2)*lny|【x,1/x】=lnx/x^2
我们可以知道f(y)是关于y的函数
可知f(x,y)=1/(2x^2*y)≠f(x)*f(y)=lnx/x^2*f(y)
所以X、Y不独立
第二题
∫∫f(x,y)dxdy=C∫【0,+∞】e^(-x)dx∫【0,+∞】xe^(-xy)=C,所以C=1
f(x)=∫【0,+∞】f(x,y)dy=e^(-x),x>0;f(x)=0,x<=0
f(y)=∫【0,+∞】f(x,y)dx=1/(y+1)^2,y>0;f(y)=0,y<=0
解毕

很简单的题目啊,自己去翻书吧.