微分方程写出传递函数 y(t)''+5y(t)'+6y(t)=6 已知 y(0)=y(0)'=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 01:52:41
微分方程写出传递函数 y(t)''+5y(t)'+6y(t)=6 已知 y(0)=y(0)'=0
xQNP~6 %M`juws10\ RFT~8`R: {Is=99)~4P;ӗt%."pKKKL،GEzŸpOO mϮR sN1Z 2XƟ 6/I,y[&J:uRyXMF:d=.\^!KTY0POq.aHޒ -R L>/IJ`1SI+~V+Ax Rwsg'gXᘯ=2M!o [rPݠ.L`E<|c)ԡ4٣k)njw?P|Ko,u-|i

微分方程写出传递函数 y(t)''+5y(t)'+6y(t)=6 已知 y(0)=y(0)'=0
微分方程写出传递函数 y(t)''+5y(t)'+6y(t)=6 已知 y(0)=y(0)'=0

微分方程写出传递函数 y(t)''+5y(t)'+6y(t)=6 已知 y(0)=y(0)'=0
设输出为y(t),输入为r(t)
则 y(t)''+5y(t)'+6y(t)=r(t)
在y(0)=y(0)'=0的条件下进行拉氏变换:
Y(s)s^2+5Y(s)s+6Y(s)=R(s)
所以传递函数为G(s)=Y(s)/R(s)=1/(s^2+5s+6)
接着把常数函数6的拉氏变换带入上式,解出Y(s)再进行反拉氏变换,就是微分方程的解了.

两边同时做F变换,带入y(0)=y(0)'=0条件,使用F变换的微分公式就可以求得结果了(时域微分的变换是带y(0)、y(0)'等等初始条件的)。