已知F1、F2是椭圆X^2/a^2+y^2/b^2=1的两个焦点,过F1的弦AB与F2组成等腰直角三角形,其中∠BAF2=90°,椭圆离心率为e,求e^2=?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 06:54:19
xRJ@ 1B$|+WHni&R->[Z߉
ԙ̸/xgQqs=ܛIRT
u~@ex ii74UiS^B,įi:vD
A[jѽ[v]N>N{6htd๕}htc6^l,991WwJ.Nj{;j@,G^t+!nof{N䗉IP}
@ d:~`fG3T 3#}n%_;#1M2=uuSg eRҾ#ߖ"߉S0bΎb"W)$2
b7㖆agH9/%C4(L}x6SOeMxV T0:0/O*39s*;V
已知F1、F2是椭圆X^2/a^2+y^2/b^2=1的两个焦点,过F1的弦AB与F2组成等腰直角三角形,其中∠BAF2=90°,椭圆离心率为e,求e^2=?
已知F1、F2是椭圆X^2/a^2+y^2/b^2=1的两个焦点,过F1的弦AB与F2组成等腰直角三角形,其中∠BAF2=90°,
椭圆离心率为e,求e^2=?
已知F1、F2是椭圆X^2/a^2+y^2/b^2=1的两个焦点,过F1的弦AB与F2组成等腰直角三角形,其中∠BAF2=90°,椭圆离心率为e,求e^2=?
顾西凉顾西森,
利用椭圆的几何定义:到两定点距离之和为定长的点的轨迹.
假设AF1长为d
∴AF2长为2a-d
∵AF2=AB
∴BF1长2a-2d.
又∵ABF2是等腰Rt△
∴BF2=√2×AF2=√2×(2a-d)
∴得到方程:
√2×(2a-d)+(2a-2d)=2a
解得d=2(√2-1)a.
对Rt△F1AF2利用勾股定理:
F1F2=√(36-24√2)×a=2√3×(√2-1)×a.
∴离心率e=F1F2/2a=√3×(√2-1)=√6-√3
e^2=(√6-√3)^2=9-6√2
1.已知F1 F2是椭圆x^2/a^2+y^2/(10-a)^2=1(5
一道关于椭圆的题已知F1,F2是椭圆X^2/25+Y^2/b^2=1(0
已知F1,F2为椭圆x^2/a^2+y^2/b^2(a>b>0)的两个焦点,过F2做椭圆的弦AB,若△AF1B的周长 是16,椭圆已知F1,F2为椭圆x^2/a^2+y^2/b^2(a>b>0)的两个焦点,过F2做椭圆的弦AB,若△AF1B的周长 是16,椭圆的离心率e=√3/2(1)
F1,F2是椭圆x^2/100+y^2/64=1两个焦点,求F1*F2最大值
已知椭圆x^2/16+y^2/9=1的左右焦点分别为F1;F2,点P;F1;F2是一个直角三角形的三个顶点,已知椭圆x^2/16+y^2/9=1的左右焦点分别为F1;F2,点P;F1;F2是一个直角三角形的三个顶点,求点P到x轴的距离?
已知f1,f2是椭圆x^2/16+y^2/9=1的两焦点,过点f2的直线交椭圆于点A、B,若|AB|=5,则|AF1|+|BF1|等于
已知F1 F2为椭圆X^2/25+Y^2/9=1的两个焦点,过点F1的直线与椭圆相交于A B两点,则三角形ABF2的周长是?具体过程紧急
已知F1 F2是椭圆x^2/4+y^2/3=1的两个焦点 过点F1的直线交椭圆于点A,B 若AB的绝对值=24/7 则直线AB的斜率
一道椭圆的数学题.已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B两点,若三角形ABF2是等腰直角三角形,则这个椭圆的离心率是?设椭圆方程为:x^2/a^2+y^2/b^2=1,a>b>0,则A、B坐
已知经过椭圆x^2/25+y^2/16=1的右焦点F2做垂直于x轴的直线AB,交椭圆于A、B两点,F1是椭圆的左焦点:求三角形AF1B的周长
关于椭圆的方程 已知F1,F2是椭圆x^2/a^2+y^2/b^2=1的两个焦点,若椭圆上有一点P,使P1垂直于PF2,试确定b/a的取值范围
已知椭圆5x^2+9y^2=45的左、右焦点分别为F1、F2……已知椭圆5x²+9y²=45的左、右焦点分别为F1、F2,点P是椭圆上任意一点,点A(1,1),求|PA|+|PF1|的取值范围.一楼:请问第二步如何得到?
已知椭圆x^2/a^2+y^2/b^2=1,F1,F2分别是椭圆的左右焦点,当椭圆上存在...已知椭圆x^2/a^2+y^2/b^2=1,F1,F2分别是椭圆的左右焦点,当椭圆上存在点P使三角形pF1F2的三边构成等差数列求离心率的范围
已知椭圆x^2/a^2+y^2/b^2=1,F1,F2分别是椭圆的左右焦点,当椭圆上存在...已知椭圆x^2/a^2+y^2/b^2=1,F1,F2分别是椭圆的左右焦点,当椭圆上存在点P使三角形pF1F2的三边构成等差数列求离心率的范围
已知点a(1.1)是椭圆x^2/a^2+y^2/b^2=1上一点,f1,f2是椭圆的两焦点,且满足af1的长+af2的长=4 问:若点b已知点a(1.1)是椭圆x^2/a^2+y^2/b^2=1上一点,f1,f2是椭圆的两焦点,且满足af1的长+af2的长=4 问:若点b是椭圆
已知F1,F2分别为椭圆C1:y^/a^2+x^2/b^2=1的上下焦点,其中F1也是抛物线x^2=4y的焦点,点M是C1,C2在第...已知F1,F2分别为椭圆C1:y^/a^2+x^2/b^2=1的上下焦点,其中F1也是抛物线x^2=4y的焦点,点M是C1,C2在第二象
已知点P在椭圆Y*2/a*2+X*/b*2上,F1,F2为椭圆的焦点,求PF1*PF2的取值范围
已知F1,F2为椭圆x^2+y^2/2=1的两个焦点,AB是过焦点F1的一条动弦求三角形ABF2面积的最大值