设椭圆的中心在原点,焦点在x轴上,e=(根号3)/2,已知这个椭圆上的点到点p(0,3/2)得最远距离是根号7,求这个点的坐标
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 09:41:46
xRN@6 dmln
$,b1(v/xe@ tr93w2w#9su)UϭM%a[-)Oֳӟ뉼5=zz|@V_SI2"9xܿ>)ׂ~PC'8s8A62Ulι\%
#]Ñ2IܗF%DUçeX#4FIb{I̓ҷW6d`l.Q&1vpHb[UHٳ;..ǒQ<*,"U[+
rN
%al*|T
xf#:8!о&YŪ9<{JK|) `xH̊
*zAe&
设椭圆的中心在原点,焦点在x轴上,e=(根号3)/2,已知这个椭圆上的点到点p(0,3/2)得最远距离是根号7,求这个点的坐标
设椭圆的中心在原点,焦点在x轴上,e=(根号3)/2,已知这个椭圆上的点到点p(0,3/2)得最远距离是根号7,求这个点的坐标
设椭圆的中心在原点,焦点在x轴上,e=(根号3)/2,已知这个椭圆上的点到点p(0,3/2)得最远距离是根号7,求这个点的坐标
设椭圆方程为:x^2/a^2+y^2/b^2=1
焦点在x轴上==>a>b
半焦距c=(a^2-b^2)^0.5
e=c/a=(a^2-b^2)^0.5/a=√3/2
==>(a^2-b^2)/a^2=3/4
==>a^2=4b^2
==>a=2b
设椭圆上一点为Q(acosα,bsinα)=(2bcosα,bsinα)
|PQ|^2=(2bcosα)^2+(3/2-bsinα)^2
=4b^2(cosα)^2+b^2(sinα)^2-3bsinα+9/4
=-3b^2(sinα)^2-3bsinα+4b^2+9/4
=-3b^2[sinα+1/(2b)]^2+4b^2+5/2
≤4b^2+5/2=(√7)^2=7
==>b^2=9/8,a^2=4b^2=9/2
==>2x^2+8y^2=9
设椭圆的中心在原点,焦点在X轴上,离心率设椭圆的中心在原点,焦点在 轴上,离心率e=(3^0.5)/2 .已知点P(0,1.5 )到这个椭圆上的点的最远距离为 (7^0.5),求这个椭圆方程.
设椭圆的中心在原点,焦点在x轴上,e=(根号3)/2,已知这个椭圆上的点到点p(0,3/2)得最远距离是根号7,求这个点的坐标
设椭圆的中心在原点,焦点在x轴上,离心率e=Γ3^2.已知点P(0.3^2)到这个椭圆上的点的最远距离为Γ7.求这...设椭圆的中心在原点,焦点在x轴上,离心率e=Γ3^2.已知点P(0.3^2)到这个椭圆上的点的最远距
设椭圆的中心在原点,焦点在x轴上,离心率e=根号3/2,切过点p(0,3/2),求这个椭圆的方程
设椭圆的中心在原点,焦点在x轴上,离心率e=根号3/2,切过点p(0,3/2),求这个椭圆的方程
设椭圆的中心在原点,焦点在x轴上,离心率e=根号3/2,且过点p(0,3/2),求这个椭圆的方程
已知椭圆E的中心在原点 焦点在x轴上,椭圆上的点到焦点的距离的最小值为1,离心率e=1/2,求椭圆方程
已知椭圆的中心在原点,焦点在x轴上,离心率e=1/3,又知椭圆上一点M,它的横坐标等于右焦点的横坐标,纵坐标是4,求此椭圆的方程
求中心在原点,对称轴为坐标轴,焦点在x轴上,离心率e=三分之一,求半长轴长为6的椭圆的标准方程
设椭圆中心在坐标原点,焦点在X轴上,离心率为E=2分之根号2,它与直线Y=-X-1相交于A,B 两点,OA垂直于OB,求些椭圆方程
设椭圆中心在原点o,焦点在x 轴上,离心率为√2/2,椭圆上一点p到两焦点距离的和等于√6,设椭圆中心在原点o,焦点在x 轴上,离心率为√2/2,椭圆上一点p到两焦点距离的和等于√6,(1)若直线x+y+M=0交
请解释圈出部分,为何用1/2做分界点讨论,原题是:设椭圆的中心在原点,焦点在X轴上,离心率e =√3 / 2,已知点p (0, 3/2) 到这个椭圆上的点的最远距离为√7,求这个椭圆方程。 设椭圆方程为X2/
已知中心在原点,焦点在x轴上的椭圆,离心率e=√2/2,是经过抛物线x^2=4y的焦点,求椭圆的标准方程.
已知椭圆E的中心在原点,焦点在x轴上,椭圆的焦距为2,离心率e=1/2,直线l:y=k(x-1)(k≠0)已知椭圆E的中心在原点,焦点在x轴上,椭圆的焦距为2,离心率e=1/2,直线l:y=k(x-1)(k≠0)与椭圆E交于不通的两点P,Q
已知椭圆E的中心在原点,焦点在x轴上,椭圆的焦距为2,离心率e=1/2,直线l:y=k(x-1)(k≠0)已知椭圆E的中心在原点,焦点在x轴上,椭圆的焦距为2,离心率e=1/2,直线l:y=k(x-1)(k≠0)与椭圆E交于不通的两点P,Q
设椭圆中心在原点,焦点在X轴上离心率为=(√3)/2已知点p(0,3/2)到这个椭圆上的点的最远距离为√7,求这个椭圆方程
已知椭圆中心在原点,焦点在x轴上,离心率 e=2,它与直线x+y+1=0的交点为P、Q,且以PQ为直径的圆过原点,求椭圆方程.
已知中心在原点'焦点在X轴上的椭圆C的离心率e=二分之一'直线l1:x+2y-4=0是椭圆C的切线 求椭圆C的标准方程设直线l1与直线l:x=-4设交于点A椭圆C的左焦点为F 求证AF⊥BF