化简:Cn0+1/2Cn1+1/3Cn2+...+1/(n+1)Cnn
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 00:25:16
x
0_%ٚmI%!t
E_⢣Ha>P@w8O}-BY$k& A(ʉ s.?rv$1JX`Qh؊
֗>ou/&@q6O'opЁgqQgvC2Z壺`9p(3_㩼5*@/˃MmgM<6_A\S
化简:Cn0+1/2Cn1+1/3Cn2+...+1/(n+1)Cnn
化简:Cn0+1/2Cn1+1/3Cn2+...+1/(n+1)Cnn
化简:Cn0+1/2Cn1+1/3Cn2+...+1/(n+1)Cnn
1/(k+1)C(n,k)
=n!/(n-k)!k! * 1/(k+1)
=n!/(n-k)!(k+1)!
=(n+1)!/(n+1-k-1)!(k+1)! *1/(n+1)
=C(n+1,k+1)*1/(n+1)
所以
Cn0+1/2Cn1+1/3Cn2+...+1/(n+1)Cnn
=1/(n+1)C(n+1,1)+1/(n+1)C(n+1,2)……+1/(n+1)C(n+1,n+1)
=1/(n+1) [C(n+1,1)+C(n+1,2)……+C(n+1,n+1)]
=1/(n+1)*(2^(n+1)-1)
因为(1+1)^n=C(n,0)+C(n,1)+……+C(n,n)
所以C(n+1,1)+C(n+1,2)……+C(n+1,n+1)=(1+1)^(n+1)-C(n+1,0)=2^(n+1)-1
所以Cn0+1/2Cn1+1/3Cn2+...+1/(n+1)Cnn=1/(n+1)*(2^(n+1)-1)
化简:Cn0+1/2Cn1+1/3Cn2+...+1/(n+1)Cnn
求证:Cn0+2Cn1+3Cn2+…+(n+1)Cnn=2n+n2n-1
求证:Cn0+3Cn1+5Cn2+…+(2n+1) Cnn=(n+1)2n
Cn0-2Cn1+3Cn2+...+(-1)^n(n+1)Cnn=?急是不是 分奇偶讨论
Cn0+2Cn1+3Cn2+…+(n+1)Cnn=256求n的值
求证:Cn0*Cn1+Cn1*Cn2+.+Cn(n-1)*Cnn=(2n)!/((n-1)!*(n+1)!)
数学二项式定力求证:Cn0/1+Cn1/2+Cn2/3……+Cnn/n+1={2^(n+1)-1}/(n+1)
2[Cn0+2Cn1+3Cn2+…+(n+1)Cnn] =(n+2)(Cn0+Cn1+…Cnn)怎么来的Cn0+2Cn1+3Cn2+…+(n+1)Cnn=2n+n2n-1已知Cni=Cn(n-i)则原等式左边=Cnn+2Cn(n-1)+3Cn(n-2)+…+(n+1)Cn0两式相加得2[Cn0+2Cn1+3Cn2+…+(n+1)Cnn
一道数学证明题:Cn0-Cn1+Cn2-Cn3+.+(-1)n次方Cnn=1
猜想Cn0+Cn1+Cn2+…Cn(n-1)Cn(n)的值,并证明
猜想Cn0+Cn1+Cn2+…Cn(n-1)Cn(n)的值,并证明
Cn0+Cn1+Cn2+Cn3+...+Cnn为什么等于2^n?
排列组合公式证明,就是CN0+CN2+CN4+.=CN1+CN3+.=2^(N-1)有图片就是C奇=C偶,怎么证明的
若Cn0+1/2Cn1+1/3Cn2+...+1/(n+1)Cnn=31/(n+1) 求(1-2x)2n的展开式中系数最大的项
在(x^2-3/x)的二项展开式中,有且只有第五项的二项式系数最大,求Cn0-(1/2)*Cn1+(1/4)Cn2+...+Cnn*(-1)^n*1/(2^n)麻烦过程写得具体点,
怎样证明高中数学组合问题Cn1+2Cn2+3Cn3+……+nCnn=n/2(Cn0+Cn1+……+Cnn)?
如何求证二项式系数之和Cn0,Cn1,Cn2,...,Cnn叫做展开式中的二项式系数,有Cn0+Cn1+Cn2+...+Cnn=2^n成立.如何求证以上公式?
公式CN0+CN1+CN2+…+CNN=2的N次方.如何推导啊