化简:Cn0+1/2Cn1+1/3Cn2+...+1/(n+1)Cnn

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 00:25:16
化简:Cn0+1/2Cn1+1/3Cn2+...+1/(n+1)Cnn
x 0_%ٚmI%!t E_⢣Ha>P@w8O}-BY$k& A(ʉs.?rv$1JX`Qh؊ ֗>ou/&@q6O'opЁgqQgvC2Z壺`9p(3_㩼5*@/˃M mgM<6_A\S

化简:Cn0+1/2Cn1+1/3Cn2+...+1/(n+1)Cnn
化简:Cn0+1/2Cn1+1/3Cn2+...+1/(n+1)Cnn

化简:Cn0+1/2Cn1+1/3Cn2+...+1/(n+1)Cnn
1/(k+1)C(n,k)
=n!/(n-k)!k! * 1/(k+1)
=n!/(n-k)!(k+1)!
=(n+1)!/(n+1-k-1)!(k+1)! *1/(n+1)
=C(n+1,k+1)*1/(n+1)
所以
Cn0+1/2Cn1+1/3Cn2+...+1/(n+1)Cnn
=1/(n+1)C(n+1,1)+1/(n+1)C(n+1,2)……+1/(n+1)C(n+1,n+1)
=1/(n+1) [C(n+1,1)+C(n+1,2)……+C(n+1,n+1)]
=1/(n+1)*(2^(n+1)-1)
因为(1+1)^n=C(n,0)+C(n,1)+……+C(n,n)
所以C(n+1,1)+C(n+1,2)……+C(n+1,n+1)=(1+1)^(n+1)-C(n+1,0)=2^(n+1)-1
所以Cn0+1/2Cn1+1/3Cn2+...+1/(n+1)Cnn=1/(n+1)*(2^(n+1)-1)