抛物线y=x2+px+q与x轴相交与A,B两点,与y轴交于点C,且OA≠OB,OA=OC,设抛物线的顶点为P,直线PC与x轴的交点D恰好与点A关于y轴对称 (1)求p,q的值 (2)在题中的抛物线上是否存在这样的点Q,使得四边

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 17:47:28
抛物线y=x2+px+q与x轴相交与A,B两点,与y轴交于点C,且OA≠OB,OA=OC,设抛物线的顶点为P,直线PC与x轴的交点D恰好与点A关于y轴对称 (1)求p,q的值 (2)在题中的抛物线上是否存在这样的点Q,使得四边
xWMSG+MDBZUƬSkIgVg]]]&qAM FWl 8 .'B^VWʕKBNOOoݣ#{4&+c(gڰ;Xq/!q Aqz~s1׵4s?]JF`N3dF:0>;S|1:q ^p#R=oLC|M22^;^G˗Z{+{h [{ 0cV_jս8s>lzNK+L08doT͹8ƒg{Tfa W3=Y4 . Kf0h7sKRZ4βWL6Wp'ߜznSA`xAʌYkl3ۋd`g޵ZÏ;#2(Z7eOnu~|<,<o]Z;,@Hv^z&43KHH3Du d2e_w$}ߪjG-dzzVlĀa9$2c8aFX!nZߝ=pH3--r+`p^Sד+_˦g)'T@24) K(E)PHaP%R 鐩C ўW'iO18w0C[ `&X>D@ɽKG'MNe^أ^57p@^ e>Of @7pj!둈҂>[ կcgKD\8ej'@pԔ>yXRxi>_ >[ͽdբb:%4>QKТzN0%%J)CXŃ.ZI50>wI*L`B"BGIE/JG@p]t@WpjÞ@υ %xO9z}q/fnl]8-c)d7M4II&9b2b/dCQIL8BIdCYśm)|vQ; g`Eڠ 㙋ýb<І銪F;:%(+*pW6dNt!|k LX@&[e^ą/םvEtjSӮKOfTEԧ0$jcd|tІ_D%\'SWoW&D}>ܙ[(垝 ndrtEV"9* ?%Ȋ }6-V5DPT`{9)jBz#膀Fɐcr ?u nI}͜fj ͞QTהrJ4 (QҲSŢ_GqyRvh)%z @R8H[by fiTGɎ_eYUF-s`*4^ϼMLQ{ш+cgkgN ѥ5CV=#L3[v-YiH@2_G.u5 ~ S`@

抛物线y=x2+px+q与x轴相交与A,B两点,与y轴交于点C,且OA≠OB,OA=OC,设抛物线的顶点为P,直线PC与x轴的交点D恰好与点A关于y轴对称 (1)求p,q的值 (2)在题中的抛物线上是否存在这样的点Q,使得四边
抛物线y=x2+px+q与x轴相交与A,B两点,与y轴交于点C,且OA≠OB,OA=OC,设抛物线的顶点为P,直线PC与x轴的交点D恰好与点A关于y轴对称
(1)求p,q的值
(2)在题中的抛物线上是否存在这样的点Q,使得四边形PAQD恰好为平行四边形?若存在,求出点Q坐标.若不存在,请说明理由
(3)连接PA,AC.问:在直线PC上,是否存在这样的点E(不与C重合),使得以点P,A,E为顶点的三角形与△PAC相似?若相似,求出点E的坐标;若不存在,请说明理由
各位有聪明脑袋的大哥们,能尽快吗,有主要思路就行!

抛物线y=x2+px+q与x轴相交与A,B两点,与y轴交于点C,且OA≠OB,OA=OC,设抛物线的顶点为P,直线PC与x轴的交点D恰好与点A关于y轴对称 (1)求p,q的值 (2)在题中的抛物线上是否存在这样的点Q,使得四边
(1)
在抛物线y=x^2+px+q中
当x=0时,y=q. 即:C点的坐标为(0,q).
因为:OA=OC,D点与A点关于y轴对称.
所以:A点的坐标为(q,0);D点的坐标为(-q,0).
将A(q,0)代人y=x^2+px+q中得:0=q^2+pq+q
即:q(q+p+1)=0
所以:q=0,(不符合题意,舍去.)
q+p=-1———————————————①
现在求点P的坐标,即抛物线y=x2+px+q顶点的坐标:
横坐标:-(p/2);纵坐标:(4q-p^2)/4.
即:点P的坐标为[-(p/2),(4q-p^2)/4]
再求直线CD的解析式: 设直线CD的方程为y=kx+b
因为直线CD过C(0,q)、D(-q,0)两点,所以有方程组
q=b, 0=-qk+b.
解得:k=1, b=q.
所以直线CD的解析式为:y=x+q.
因为点P[-(p/2),(4q-p^2)/4]在直线CD上,
所以 4q-p^2)/4=-(p/2)+q
解得: q=0(不符合题意,舍去)
q=2————————————————②
又已经求得的①、②两等式得:p=2,q=-3.
因此;p、q的值分别为 2和-3.
(2)
因为:p=2,q=-3.
所以:抛物线y=x2+px+q的解析式为y=x^2+2x-3,A、D、C、P四点的坐标分别为(-3,0)、(3,0)、(0,-3)、(-1,-4).
在第一问中已经求得直线CD的方程式为y=x+q,因此将q=-3代人得:
y=x-3(这是直线CD的解析式)
设:过A点与直线CD平行的直线AQ的方程为:
y=x+b(因两直线平行,所以一次项系数相等)
因为点A(-3,0)在直线AQ上,将其代人y=x+b中得:0=-3+b,解得:b=3
所以:直线AQ的方程为:y=x+3
下面求直线AQ(y=x+3)与抛物线y=x^2+2x-3的交点Q的坐标:
解方程组y=x^2+2x-3,y=x+3.得x1=2,y=5;x2=-3,y2=0.
即:两交点为A(-3,0);Q(2,5).
下面再求A、Q两点距离和PD两点距离:从图形可知
|AQ|=√[5^2+(2+3)^2]=5√2
|PD|=√(4^2+4^2)=4√2
所以|AQ|≠|PD|
这说明AQ与PD不相等,所以在抛物线y=x2+px+q上不存在满足四边形APDQ是平行四边形的Q点.
(3)
存在E点,且E点坐标为(9,6).
具体求解过程如下:
设E点是直线PC上的点,且满足AE垂直AP
求直线AP的方程,设直线AP的方程为y=kx+b
因为A(-3,0),P(-1,-4)两点在直线AP上,所以有方程组
0=-3k+b,-4=-k+b.解得:k=-2,b=-6.
所以直线AP的方程式为:y=-2x-6
因为直线AE垂直直线AC,所以两直线一次项系数之积等于-1
所以,设直线AE方程式为y=(1/2)x+b
A(-3,0)点在直线AE上,所以有0=(1/2)*(-3)+b 即b=3/2
所以直线AE的方程式为y=(1/2)x+3/2
直线AE与直线CD相交于E点,解两直线方程组成的方程组:
y=(1/2)x+3/2,y=x-3.解得:x=9,y=6.
即E点的坐标为(9,6).
在三角形ACD中,因为OA=OD=OC,AD垂直CO
所以角ACD是直角,
在直角三角形APE中,AC是斜边PE上的高
所以△APC∽△EPA

已知一元二次方程x2+px+q+1=0的一根为2.设抛物线y=x2+px+q的顶点为M,且与x轴相交于A(X1,0)、B(X2,0)两点,求使△AMB面积最小时的抛物线的解析式. 已知一元二次方程x^+px+q+1=0的一根为21:求q关于p的关系式2:求证:抛物线y=x^+px+q与x轴有两个交点3:设抛物线y=x^+px+q的顶点为M,且与x轴相交于A(x1,0),B(x2,0)两点,求使三角AMB面积最小时的抛物 已知抛物线y=x2+px+q+1,其中当x=2时y=0.求证:该抛物线与x轴有两个交点证:抛物线y=x+px+q与x轴有两个交点吧 已知一元二次方程x2+px+q+1=0的一根为2. (1)求q关于p的关系式;(2)求证:抛物线y=x2+px+q与x轴有两个交点;(3)设抛物线y=x2+px+q的顶点为M,且与x轴相交于A(x1,0)、B(x2,0)两点, 已知,如图,抛物线y=x2+px+q与x轴相交于A、B两点,与y轴交于点C,且OA≠OB,OA=OC,设抛物线的顶点为已知,如图,抛物线y=x2+px+q与x轴相交于A、B两点,与y轴交于点C,且OA≠OB,OA=OC,设抛 已知一元二次方程X平方+px+q+1=0的一个根为2.设抛物线y=x平方+px+q的顶点为m,且与x轴相交于A(x1,0),B(x2,0)两点,求使三角形AMB面积最小时的抛物线解析式 关于抛物线的抛物线y=x2+px+q与x轴相交与A,B两点,与y轴交于点C,且OA≠OB,OA=OC,设抛物线的顶点为P,直线PC与x轴的交点D恰好与点A关于y轴对称 (1)求p,q的值 (2)在题中的抛物线上是否存在这样的 抛物线y=x2+px+q与x轴相交与A,B两点,与y轴交于点C,且OA≠OB,OA=OC,设抛物线的顶点为P,直线PC与x轴的交点D恰好与点A关于y轴对称 (1)求p,q的值 (2)在题中的抛物线上是否存在这样的点Q,使得四边 若抛物线y=x2+px+q与x轴的交点为(p,0),(q,0),则该抛物线的解析式为 若抛物线y=x2+px+q与x轴的交点为(p,0),(q,0),则该抛物线的解析式为 数学题-2011.1.14 如图,抛物线y=1/2x^2+px+q与y轴交于点C,与直线y=x相交于A、B两点,且OA=OB,AC//x轴.如图,抛物线y=1/2x^2+px+q与y轴交于点C,与直线y=x相交于A、B两点,且OA=OB,AC//x轴.(1)求p、q的值;(2)若 已知一元二次方程x^2+px+q+1=0的一根为21.求q关于p的关系式2.求证:抛物线y=x^2+px+q与x轴有两个交点3.设抛物线y=x^2+px+q的顶点为M,且与x轴交与A(x1,0)B(x2,0)两点,求使△AMB面积最小时的抛物线的解 已知一元二次方程x^2+px+q+1=0的一根为21.求q关于p的关系式2.求证:抛物线y=x^2+px+q与x轴有两个交点3.设抛物线y=x^2+px+q的顶点为M,且与x轴交与A(x1,0)B(x2,0)两点,求使△AMB面积最小时的抛物线的解 已知抛物线y-=x2+px+q与x轴的交点为(3,0)和(-5,0),则该抛物线对称轴 已知抛物线y-=x2+px+q与x轴的交点为(3,0)和(-5,0),则该抛物线对称轴 已知一元二次方程x2➕px➕q➕1=0的一根为2.1)求q关于p的关系式;2)求证:抛物线y=x2➕px➕q与x轴有两个交点 已知抛物线y=x2+px+q与x轴的两个交点为(-2,0),(3,0),则p= ,q= . 三道初三关于二次函数的数学题1,已知一元二次方程x^2+px+q+1=o的一根为2.(1)求q关于p的关系式.(2)求证:抛物线y=x^2+px+q与x轴有两个交点.(3)设抛物线y=x^2+px+q的顶点为M,且与X轴相交于A(X