求y=√(arc sin(1/x^3))的微分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 11:53:33
求y=√(arc sin(1/x^3))的微分
x){Q,Ģd< C8cMZ[&HUv6ĚU ĞΆ')FXj`ՊK>HP7Tꮈ%UPHfJD1: AeJuh,rф&I\.P&*CfNb(W zW 8Mie

求y=√(arc sin(1/x^3))的微分
求y=√(arc sin(1/x^3))的微分

求y=√(arc sin(1/x^3))的微分
y=√(arc sin(1/x^3))
所以
dy=1/2√(arc sin(1/x^3))*d(arc sin(1/x^3))
=1/2√(arc sin(1/x^3))*1/√(1-1/x^6) *d(x^(-3))
=1/2√(arc sin(1/x^3))*1/√(1-1/x^6) *(-3x^(-4))dx
=-3/2√(arc sin(1/x^3))*1/√(1-1/x^6) *(x^(-4))dx

y=√(arc sin(1/x^3))
y'=[√(arc sin(1/x^3))]'
=arc sin(1/x^3))'/[2√(arc sin(1/x^3))]
=1/√[1-sin^2(1/x^3)/[2√(arc sin(1/x^3))])]*sin(1/x^3)'
=1/√[1-sin^2(1/x^3)/[2√(arc sin(1/x^3))])]*cos(1/x^3)*(1/x^3)'
=1/[2√(arc sin(1/x^3))])]*(1/x^3)'
=1/[2√(arc sin(1/x^3))])]*(-3/x^4)