两道求极限的高数题第一题lim2^nsin(x/2^n) n趋近于无穷(x为不等于零的常数)第二题limsin (x^n)/(sinx)^n (mn为正整数)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 09:29:56
两道求极限的高数题第一题lim2^nsin(x/2^n) n趋近于无穷(x为不等于零的常数)第二题limsin (x^n)/(sinx)^n (mn为正整数)
xRn@+R7vl>"_C:PJPQť)WVH)PΙsw&c~;Oe%j< G1zUON~5Xi]AAoԎ·g;{7xp5@>ޘ3%* C&V -XL:I+4$2:I&8S.bٹs󂴶&ߕIbl, 4&@璗RfaRd{;(g]}!ΛvX*:"Z-УE0o 9檕eD^f$>He JZ9A44"i]s*kXl(p,+q,e]`E_K{.hXS+j,#)XuEuUP I4R^ bi-[fg֝,7L2|4[,{ f

两道求极限的高数题第一题lim2^nsin(x/2^n) n趋近于无穷(x为不等于零的常数)第二题limsin (x^n)/(sinx)^n (mn为正整数)
两道求极限的高数题
第一题lim2^nsin(x/2^n) n趋近于无穷
(x为不等于零的常数)
第二题limsin (x^n)/(sinx)^n (mn为正整数)

两道求极限的高数题第一题lim2^nsin(x/2^n) n趋近于无穷(x为不等于零的常数)第二题limsin (x^n)/(sinx)^n (mn为正整数)
第一题答案为x,当n趋近于无穷时,sin(x/2^n) 等价于x/2^n,故为X
第二题写的不太明白,没法做.

如图所示,(图片需要审核,稍安勿躁)

第二题有毛病,没法做

1. lim x*sin(x/2^n)/(x/2^n)=x
2. lim sin(x^n)/(x^n)*(x/sinx)^n=1