已知函数y=f(x)的定义域为R,并对一切实数x都有f(2+x)=f(2-x).证明:函数y=f(x)的图像关于直线x=2对称要有具体的过程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 16:07:47
已知函数y=f(x)的定义域为R,并对一切实数x都有f(2+x)=f(2-x).证明:函数y=f(x)的图像关于直线x=2对称要有具体的过程
x͑N@_G@=f T8FNj6w1;,|?1MO|ogUC# n򋙩"2O gcCx y|2 -"bSE"Nj).Y"ZnVQΐ,V6{ƪM6t. +{We#5M+E2QBhm(JGGa2K" T8vkޜy=.k"UKNCՎ2\W'Ψ]~mtʇ^~'

已知函数y=f(x)的定义域为R,并对一切实数x都有f(2+x)=f(2-x).证明:函数y=f(x)的图像关于直线x=2对称要有具体的过程
已知函数y=f(x)的定义域为R,并对一切实数x都有f(2+x)=f(2-x).证明:函数y=f(x)的图像关于直线x=2对称
要有具体的过程

已知函数y=f(x)的定义域为R,并对一切实数x都有f(2+x)=f(2-x).证明:函数y=f(x)的图像关于直线x=2对称要有具体的过程
要y=f(x)图像关于x=2对称,则要对于每个y=f(x)上的点P(x1,y1),都有它关于x=2对称点P'(x1',y1')在图像上 x1'=4-x1 y1'=y1 由于f(2+x)=f(2-x) ∴对于任意实数x,有f(x)=f(4-x) ∴y1'=y1=f(x1)=f(4-x1)=f(x1') ∴P'在图像上 ∴函数y=f(x)的图像关于直线x=2对称

已知函数f(x)的定义域为R,且对任意x,y属于R都有f(x+y)=f(x)+f(y),判断fx的奇偶性并证明 已知函数的定义域为R,并对一切实数x,y都有2f(x-y)=f(x)+3f(y)+x(x+2y+1) ,求f(x)解析式 已知函数y=F(x)的定义域为R并对一切实数x都满足f(2+X)=f(2-X)证明函数y=f(x)的图像关于什么对称 已知函数f(x)的定义域为R且对任意x,y∈R,有fx+y)=f(x)+f(y)+2, 若对定义域为R的函数y=f(x),恒有f(x) 已知函数y=f(x)的定义域为R,其导数f'(x)满足0 已知函数f(x)的定义域为R,若f(x)恒不为零,且对任意x、y有f(x+y)+f(x-y)=2f(x)f(y).判断f(x)的奇偶性. 高一数学函数问题“已知函数y=f(x)的定义域为R,值域为【1,2】,求y=f(x)的值域” 已知函数f(x)的定义域为R,且不恒为0,对任意的x、y∈R,都有f(x+y)=f(x)+f(y),求证:f(x)为奇函数 已知函数f(x)的定义域为R,且对任意实数x,y都有f(x+y)=f(x)+f(y)+1/2,且f(1/2)=0,当x>1/2时,f(X)>01)求f(1)+f(2)+……f(n)(n∈N*)2)判断函数f(x)的单调性并证明 已知f(x)=x^2*|x|在定义域R上为偶函数,g(x)在定义域R上为奇函数,判断并证明函数y=g(x)*f(x)的奇偶性 已知函数f(x)的定义域为R,且对任意x,y属于R都有f(x+y)=f(x)+f(y) 若x>0时,有f(x) 设函数f(x)的定义域为R,当x1且对任意实数x,y有f(x+y)=f(x)f(y)求f(0)判断并证明f(x)的单调性 已知函数y=f(x) 的定义域为R,当x1 ,且对任意的实数x,y属于 R,等式f(x)f(y)=f(x+y) 成立. 【高一数学】设函数y=f(x)的定义域为R,当x>0时,f(x)>0,且对任意的a,b属于R,都有f(a+b)=f(a)+f(b),试判断f(x)在R上的单调性,并解关于x的不等式f(2x) 已知定义域为R的函数对任意实数X,Y满足f(x+y)+f(x-y)=2f(x)cosy且f(0)=0,f(π/2)=1.则 f(x)为周期函数 设函数f(x)的定义域为R,且f(x+y)=f(x)-f(y).判断并证明f(x)的奇偶性 高一数学必修一函数的一题已知函数y=f(x)的定义域为R,对任意x,y属于R,均有f(x+y)=f(x)+f(y),且对于任意x>0都有f(x)<0,f(1)=-1.解不等式f(x+3)+f(4x)≤2 前面已经算出函数为奇