在梯形ABCD中,已知AD∥BC,AB=AD=DC,AC⊥AB,延长CB至点F,使BF=CD (1)求角ABC的度数(2)证明;△CAF是等腰三角形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 10:25:26
在梯形ABCD中,已知AD∥BC,AB=AD=DC,AC⊥AB,延长CB至点F,使BF=CD (1)求角ABC的度数(2)证明;△CAF是等腰三角形
在梯形ABCD中,已知AD∥BC,AB=AD=DC,AC⊥AB,延长CB至点F,使BF=CD (1)求角ABC的度数
(2)证明;△CAF是等腰三角形
在梯形ABCD中,已知AD∥BC,AB=AD=DC,AC⊥AB,延长CB至点F,使BF=CD (1)求角ABC的度数(2)证明;△CAF是等腰三角形
∵AB=AD=DC,AD)∥BC
∴梯形ABCD是等腰梯形
∠DAC=∠ACB,∠DAC=∠DCA
∴∠ACB=∠DCA=1/2∠DCB=1/2∠ABC
∴∠DAC=1/2∠ABC
∵AC⊥AB即∠BAC=90°
∴∠DAC+∠BAC+∠ABC=180°
即1/2∠ABC+90°+∠ABC=180°
∠ABC=60°
∴∠ACB=90°-60°=30°
∵BF=AB,∠ABC=∠BAF+∠BFA=60°
∴∠BAF=∠BFA=30°
∴∠BFA=∠AFC=∠ACB=∠ACF=30°
即∠AFC=∠ACF
∴;△CAF是等腰三角形
请画图谢谢
(1)过A点作AC的垂线,交CD的延长线于E。∵AD∥BC,∴∠CAD=∠BCA,又∵AB=AD=DC,∴∠CAD=∠DCA,∴∠ACD=∠ACB,∴RtΔBAC≌ RtΔ EAC,∴∠ABC=∠AEC,AB=AE。∵AB=AD=AE,∴∠AED=∠ADE。∵2∠ADE+∠EAD=180度,∠EAD+∠CAD=90度,而∠EDA=2∠CAD,∴∠EAD=30度,∴∠ABC=∠AEC=60度.
全部展开
(1)过A点作AC的垂线,交CD的延长线于E。∵AD∥BC,∴∠CAD=∠BCA,又∵AB=AD=DC,∴∠CAD=∠DCA,∴∠ACD=∠ACB,∴RtΔBAC≌ RtΔ EAC,∴∠ABC=∠AEC,AB=AE。∵AB=AD=AE,∴∠AED=∠ADE。∵2∠ADE+∠EAD=180度,∠EAD+∠CAD=90度,而∠EDA=2∠CAD,∴∠EAD=30度,∴∠ABC=∠AEC=60度.
(2)∵FB=AB,∴∠AFB=∠FAB,∴∠AFB=30度.又由(1)知,∠ACB=∠CAD=1/2∠AED=30度,∴∠AFC=∠ACF,即△CAF是等腰三角形.
+
收起
1)∵AD∥BC,AB=DC,∴∠DCB=∠ABC;
∵AD=DC,∴∠DCA=∠DAC.
∵AD∥BC,∴∠DAC=∠ACB,
则∠DCB=2∠ACB,所以∠ABC=2∠ACB.
∵AC⊥AB,∴∠ABC+∠ACB=90°,
∴∠ACB=30°,∠ABC=60°;
(2)证明:∵BF=CD,AB=DC,∴BF=AB.
∴∠F=∠BAF.
全部展开
1)∵AD∥BC,AB=DC,∴∠DCB=∠ABC;
∵AD=DC,∴∠DCA=∠DAC.
∵AD∥BC,∴∠DAC=∠ACB,
则∠DCB=2∠ACB,所以∠ABC=2∠ACB.
∵AC⊥AB,∴∠ABC+∠ACB=90°,
∴∠ACB=30°,∠ABC=60°;
(2)证明:∵BF=CD,AB=DC,∴BF=AB.
∴∠F=∠BAF.
∵∠ABC=60°,∴∠F=30°.
∴∠ACB=∠F.
∴AC=AF,即:△CAF为等腰三角形;
是这个不
收起