求log3^2*log4^9的值求log3^2*log4^9的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 23:49:10
求log3^2*log4^9的值求log3^2*log4^9的值
x){)'?8H HY>avQ"}IِaP@#QS#Iϗz{i TR~糩 6w60(wP5O?ݰٌpclA<KJԃلpaae dhU!Kii}i) BH$AA{HH$jgLFP!1@<1|-O;ڞ~SV ㆦ EdA

求log3^2*log4^9的值求log3^2*log4^9的值
求log3^2*log4^9的值
求log3^2*log4^9的值

求log3^2*log4^9的值求log3^2*log4^9的值
log(a)(b)表示以a为底的b的对数.
所谓的换底公式就是log(a)(b)=log(n)(b)/log(n)(a).
log3^2*log4^9=(1g2/1g3)*(1g9/1g4)
=(1g2/1g3)*(2*1g3/2*1g2)
=(1g2/1g3)*(1g3/1g2)
=1

log3^2*log4^9=log3^2*(2/2)*log2^3=1

log3^2*log4^9
=log3^2*2*log4^3
=log3^2*2*1/2*log2^3
=1

1,log4^9=log3^2分之一

用换底公式。
log3^2*log4^9=(1g2/1g3)*(1g9/1g4)
=(1g2/1g3)*(2*1g3/2*1g2)
=(1g2/1g3)*(1g3/1g2)
=1

1