已知三角形ABC中,AB=BC=1,角ABC=90度,把一块含30度角的直角三角形DEF的直角顶点D放在AC的中点上直角三角板的短直角边为DE,长直角边为DF将直角三角板DEF绕D点按逆时针方向旋转.(1)图1中,DE交AB于M

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 00:07:29
已知三角形ABC中,AB=BC=1,角ABC=90度,把一块含30度角的直角三角形DEF的直角顶点D放在AC的中点上直角三角板的短直角边为DE,长直角边为DF将直角三角板DEF绕D点按逆时针方向旋转.(1)图1中,DE交AB于M
xVR"G~s40n1p7s y:ꊃ( t8U%obMOWBNw0nTrkQN9wNލu|ɗVĪ3$K', EkswhN^R pI5bcI6yU tP3a=%+3@8LUFYWV '5؉`0s9BH` X{DNHnf8Y6#x/c/h A'ǩ`y9V|ZllkvrÎXHBڗvt;pЌu[p x)rPԊ* UD$Q-_Qä sh0 Aar6[}ʹihEs:Wai[5]M˻[uZ%EkY\ZʸσfajpǬu!Tn㜵$GEO])g|&,Z y1 vZ@ʨӂQUYENhfk5(N^aO~l+g"I]f_EzWe{/ _G ϒk}Ȍvnwۈ?N.u)YPJa:1Ŕ>ATѽ:rH2˵n֊dI·2= 0Bf

已知三角形ABC中,AB=BC=1,角ABC=90度,把一块含30度角的直角三角形DEF的直角顶点D放在AC的中点上直角三角板的短直角边为DE,长直角边为DF将直角三角板DEF绕D点按逆时针方向旋转.(1)图1中,DE交AB于M
已知三角形ABC中,AB=BC=1,角ABC=90度,把一块含30度角的直角三角形DEF的直角顶点D放在AC的中点上
直角三角板的短直角边为DE,长直角边为DF将直角三角板DEF绕D点按逆时针方向旋转.
(1)图1中,DE交AB于M,DF交BC于N.
证明DM=DN;
在这一旋转过程中,直角三角板DEF与三角形ABC的重叠部分为四边形DMBN,请说明四边形DMBN的面积是否有变化?若发生变化,请说明是如何变化的?如不发生变化,请求出面积;(2)继续旋转至如图2的位置,延长AB交DE于M,延长BC交DF于N,DN=DM是否成立?若成立,请给出证明;若不成立,请说明理由;
(3)继续旋转至如图3的位置,延长FD交BC于N,延长BC交AB于M,DN=DM是否成立?请写出结论,并证明.

已知三角形ABC中,AB=BC=1,角ABC=90度,把一块含30度角的直角三角形DEF的直角顶点D放在AC的中点上直角三角板的短直角边为DE,长直角边为DF将直角三角板DEF绕D点按逆时针方向旋转.(1)图1中,DE交AB于M
表示刚好我也在找这道题的解题方法……希望能够帮到你~

缺图

图在哪?

解:(1)
①连接BD,
∵AB=BC ∠ABC=90°
∴△ABC是等腰直角三角形,
∴∠A=∠C=45°
∵D是AC的中点
∴BD是△ABC的中线
∴BD是△ABC的高
∴∠BDC=90°
∴∠DBC=45°=∠DCB
∴BD=CD=AD
∴∠DBC=∠DAB=45°
∵∠EDF...

全部展开

解:(1)
①连接BD,
∵AB=BC ∠ABC=90°
∴△ABC是等腰直角三角形,
∴∠A=∠C=45°
∵D是AC的中点
∴BD是△ABC的中线
∴BD是△ABC的高
∴∠BDC=90°
∴∠DBC=45°=∠DCB
∴BD=CD=AD
∴∠DBC=∠DAB=45°
∵∠EDF=90°=∠ADB ∠EDB为公共角
∴∠ADM=∠BDN
∴△ADM≌△BDN(ASA)
∴DM=DN.
②四边形DMBN的面积不发生变化,理由如下:
由①可知S△ADM=S△BDN
∴S四边形DMBN=S△ADB
已知△ADB的面积是一个定值
∴四边形DMBN的面积不发生变化
∵AB=AC=1,S△ADB=1/2S△ABC
∴S四边形DMBN=S△ABD=1/2S△ABC=1/4

收起

很难,学校猥琐啊!我学科竞赛就考这个!我刚看完题目就收卷了…

证明:(1)①如图1,连接DB,在Rt△ABC中,AB=BC,AD=DC,
∴DB=DC=AD,∠BDC=90°,
∴∠ABD=∠C=45°,
∵∠MDB+∠BDN=∠CDN+∠BDN=90°,
∴∠MDB=∠NDC,
∴△BMD≌△CND,
∴DM=DN;
②四边形DMBN的面积不发生变化;
由①知△BMD≌△CND,
∴S...

全部展开

证明:(1)①如图1,连接DB,在Rt△ABC中,AB=BC,AD=DC,
∴DB=DC=AD,∠BDC=90°,
∴∠ABD=∠C=45°,
∵∠MDB+∠BDN=∠CDN+∠BDN=90°,
∴∠MDB=∠NDC,
∴△BMD≌△CND,
∴DM=DN;
②四边形DMBN的面积不发生变化;
由①知△BMD≌△CND,
∴S△BMD=S△CND,
∴S四边形DMBN=S△DBN+S△DMB=S△DBN+S△DNC=S△DBC= 12S△ABC= 12× (22)2= 14;
(2)DM=DN仍然成立;
证明:如上图2,连接DB,在Rt△ABC中,AB=BC,AD=DC,
∴DB=DC,∠BDC=90°,
∴∠DCB=∠DBC=45°,
∴∠DBM=∠DCN=135°,
∵∠NDC+∠CDM=∠BDM+∠CDM=90°,
∴∠CDN=∠BDM,
∴△BMD≌△CND,
∴DM=DN.
(3)DM=DN

收起