若已知函数f(X)=x^3-3ax^2+4x+1在X属于(0,1)上是增函数,求实数a的取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 11:44:41
若已知函数f(X)=x^3-3ax^2+4x+1在X属于(0,1)上是增函数,求实数a的取值范围
xSKOP+MLM߽ ?I.D7e7 $:02C!pTJ/dN[VO_0х ;4=qN.;>}e%ՈJWdۓM/  Ŕ篢w1hxYh2t'wK3 :=fDT._ ѐ]ƦVc~f(S=YwЖƨZ K͹XI 7ߝE/@mhntZܺavQ1ܛ7prDNRfOea#!x7 .ߪ֕!:SVQTnULJT"~ݝhh%#%'o;.c^N$(W'i[B7>'c4m`܇6 R"T n~{U$J^ a2r9}6/JRM,SNO3

若已知函数f(X)=x^3-3ax^2+4x+1在X属于(0,1)上是增函数,求实数a的取值范围
若已知函数f(X)=x^3-3ax^2+4x+1在X属于(0,1)上是增函数,求实数a的取值范围

若已知函数f(X)=x^3-3ax^2+4x+1在X属于(0,1)上是增函数,求实数a的取值范围
y'=3x^2-6ax+4=3(x-a)^2+4-3a^2
y'(0)=4
y'(1)=3-6a+4=7-6a>=0,a

f'(x)=2x^2-6ax+4=2(x^2-3ax+2)
若f(x)在(0,1)上是增函数,则(x^2-3ax+2)在(0,1)上是恒大于0的
通过画图可得f(1)>=0且f(0)>=0且3a/2>=1,或3a/2<=0
解得2/3≤a≤1

解: f'(x)=3x^2-6ax+4
当-2√3/3<=a<=2√3/3时, f'(x)恒大于等于0, 即f(x)在R上是增函数, 必有在(0,1)上是增函数.
当a<-2√3/3或a>2√3/3时, f'(x)>=0可解得x>a+√(a^2-4/3)或x 由于f(x)在(0,1)上是增函数, 则必有(0,1)⊂(a+√(a...

全部展开

解: f'(x)=3x^2-6ax+4
当-2√3/3<=a<=2√3/3时, f'(x)恒大于等于0, 即f(x)在R上是增函数, 必有在(0,1)上是增函数.
当a<-2√3/3或a>2√3/3时, f'(x)>=0可解得x>a+√(a^2-4/3)或x 由于f(x)在(0,1)上是增函数, 则必有(0,1)⊂(a+√(a^2-4/3),+∞)或(0,1)⊂(-∞, a-√(a^2-4/3)).
因此, 有a+√(a^2-4/3)<=0或a-√(a^2-4/3)>=1.
解之, 得a<-2√3/3或2√3/3综上所述, 可得a<=7/6.

收起