已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点,(点P与B不重合)连结AP,将线段AP绕点A逆时针旋转60°得到线段AQ,连结QE,并延长交射线BC于点F.(1)求角DBC的度数(2)试猜想线段BF与DF
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 23:56:46
已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点,(点P与B不重合)连结AP,将线段AP绕点A逆时针旋转60°得到线段AQ,连结QE,并延长交射线BC于点F.(1)求角DBC的度数(2)试猜想线段BF与DF
已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点,(点P与B不重合)连结AP,将线段AP绕点A逆时针旋转60°得到线段AQ,连结QE,并延长交射线BC于点F.(1)求角DBC的度数
(2)试猜想线段BF与DF的数量关系为BF_DF,并说明理由
(3)设点A关于直线EF的对称点为点Q,已知AB=2根号3厘米,当BP=——厘米时,△APQ是等腰三角形
(4)设点A关于直线EF的对称点为点Q,当∠APB=——°,△APQ是等腰三角形
△ABD是等边三角形,
已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点,(点P与B不重合)连结AP,将线段AP绕点A逆时针旋转60°得到线段AQ,连结QE,并延长交射线BC于点F.(1)求角DBC的度数(2)试猜想线段BF与DF
(1)∠EBF=30°,∠QFC=60°;
(2)∠QFC=60°,
不妨设BP>,如图1所示,
∵∠BAP=∠BAE+∠EAP=60°+∠EAP,
∠EAQ=∠QAP+∠EAP=60°+∠EAP,
∴∠BAP=∠EAQ,
在△ABP和△AEQ中,
AB=AE,∠BAP=∠EAQ,AP=AQ,
∴△ABP≌△AEQ(SAS),
∴∠AEQ=∠ABP=90°,
∴∠BEF=,
∴∠QFC=30°+30°=60°;
(3)在图1中,过点F作FG⊥BE于点G,
∵△ABE是等边三角形,
∴BE=AB=,
由(1)得30°,
在Rt△BGF中,
∴BF=,
∴EF=2,
∵△ABP≌△AEQ,
∴QE=BP=x,
∴QF=QE+EF=x+2,
过点Q作QH⊥BC,垂足为H,
在Rt△QHF中,(x>0)
即y关于x的函数关系式是:
你的题目错了吧,abe怎么可能是等边三角形