已知点P在抛物线y^2=4x上,设点P到y轴的距离为d1,到圆(x+3)^2+(y-3)^2=1上的动点q的距离为d2,求d1+d2的最小值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 09:39:58
已知点P在抛物线y^2=4x上,设点P到y轴的距离为d1,到圆(x+3)^2+(y-3)^2=1上的动点q的距离为d2,求d1+d2的最小值
xSMo@+AYKs87窑Zq*^FMHT!|4ԭ_R>/t8N^zl{l*'?=ڶ͞Az5 z(nItDq-a!缷C$ ~!#@t xyjщP$HAZ\[A4zknWۚwi~Im! S$y\.UԐZ:g7V& %֬q i

已知点P在抛物线y^2=4x上,设点P到y轴的距离为d1,到圆(x+3)^2+(y-3)^2=1上的动点q的距离为d2,求d1+d2的最小值
已知点P在抛物线y^2=4x上,设点P到y轴的距离为d1,到圆(x+3)^2+(y-3)^2=1上的动点q的距离为d2,
求d1+d2的最小值

已知点P在抛物线y^2=4x上,设点P到y轴的距离为d1,到圆(x+3)^2+(y-3)^2=1上的动点q的距离为d2,求d1+d2的最小值
根据抛物线定义:抛物线是指平面内到一个定点和一条定直线l距离相等的点的轨迹,也就是说 P到准线的距离等于到焦点的距离.
y^2=4x=2px,p=2
点P到y轴的距离为d1,那么点P到准线的距离是D1,有D1=d1+p/2=d1+1,d1=D1-1
y^2=4x的焦点是 F(1,0)
所以问题就变成 P到(1,0)和圆周的距离之和的最小值.
圆心是 (-3,3),在抛物线的左侧
所以,连接F和圆上的任意一点,都经过抛物线.
这样问题就变成 点F到圆上动点Q之间的最小值,显然连接圆心和F,交点就是最小值所在的Q点.
这样d1+d2的最小值就是 :[圆心到F的距离-圆的半径r]-1
=√((-3-1)^2+(3-0)^2)-1-1
=5-1-1
=3

先找到此圆的圆心⊙(-3,3)半径r=1
做出圆的图像
画出抛物线的图像(注意:图像在xy都在正值上。也就是在第一象限)
找出抛物线离圆最近的点是原点也就是点(0,0)
连接原点和圆心 算出距离为3√2
再减去圆的半径1
答案就是3√2-1...

全部展开

先找到此圆的圆心⊙(-3,3)半径r=1
做出圆的图像
画出抛物线的图像(注意:图像在xy都在正值上。也就是在第一象限)
找出抛物线离圆最近的点是原点也就是点(0,0)
连接原点和圆心 算出距离为3√2
再减去圆的半径1
答案就是3√2-1

收起

已知点P在抛物线y^2=4x上,设点P到抛物线准线的距离为d1,到直线x+2y+10=0的距离为d2,则d1+d2的最小值 已知点P是抛物线y2=4x上一点,设点P到此抛物线准线的距离为d1,到直线x+2y+10=0的距离为d2,则d1+d2的最小值是 已知点p在抛物线y²=2x上 1.若p横坐标为2,求点p到抛物线焦点的距离 2.若点p到抛物线焦点的距离4,求点p坐标 已知PQ两点关于x轴对称且点P在双曲线y=2/x上,点Q在直线y=x+4上设点P的坐标为(a,b)已知PQ两点关于x轴对称,且点P在双曲线y=2/x上,点Q在直线y=x+4上设点P的坐标为(a,b),求抛物线y=abx²+(a+b)x-5 已知点P在抛物线y^2=4x上,设点P到抛物线准线的距离为d1,到圆(x+3)^2+(y-3)^2=1上的动点q的距离为d2,求d1+d2的最小值 已知点P在抛物线y^2=4x上,设点P到y轴的距离为d1,到圆(x+3)^2+(y-3)^2=1上的动点q的距离为d2,求d1+d2的最小值 已知A(0,-3)B(2,3)设点P为抛物线X^2=Y上一点,求△PAB面积的最小值及取到最小已知A(0,-3)B(2,3)设点P为抛物线X²=Y上一点,求△PAB面积的最小值及取到最小值时P点的坐标 已知点P在抛物线Y^2=4X上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标是多少? 已知点P在抛物线Y^2=4X上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离只和取得最小值时,点P的坐标 已知点P在抛物线Y^2=4X上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标是多少? 已知点P在抛物线y^2=4x上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为___________ 设点P在曲线x^2+4*y^2=4上,且到直线y=2的距离是1,则点P的坐标是 设点P到直线3x-4y+6=0的距离为6,且点P在X轴上,求点P的坐标 已知抛物线y^2=4x,及点P(a,0),求抛物线上的点Q到P点的最近距离 设点P在抛物线Y^2=2X上运动,点P在Y轴上的射影为M,点A(7/2,4)为定点,则/PA/+/PM/的最小值是 设点P在抛物线Y^2=2X上运动,点P在Y轴上的射影为M,点A(7/2,4)为定点,则/PA/+/PM/的最小值是 已知点P在抛物线y^2=x上,且到直线x-2y+6=0的距离最短,则点P坐标为 已知点P(3,m)是抛物线y^2=4x上的点,则P到抛物线焦点F的距离、求过程、谢谢、、