若3π/2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 11:05:15
若3π/2
xTN@ILL >H´?B0QWnҚFDQ"7( i_p:}1]=3=3-*Q?_U` [H;vnPMO]ܮI!K .L]8Q9mUȒD^J13-rȍ@` ٤}4 gYBmV zEA^Q$ Yn A &CӀrޭ"d1 oG]trEPjE(% %B=Bfy' ?%i2b PJ8 ^#XFL nZ(R\bq(/Z -l6@Gj5Bq/Va[% :]!~bޭ2.~BV{<=S7@

若3π/2
若3π/2

若3π/2
二倍角公式:
cos2α=2(cosα)^2-1=1-2(sinα)^2
1/2*(cos2α+1)=(cosα)^2
1/2*(1-cos2α)=(sinα)^2
所以:
√(1/2+1/2*√(1/2+1/2*cos2α))
=√(1/2+1/2*√(cosα)^2)
=√(1/2+1/2|cosα|)
一、当3π/2

利用二倍角公式,讨论:
当3π/2<α<=5π/2时,cosα>0,cos(α/2)<0,原式化简得-cos(α/2)
当5π/2<α<3π时,cosα<0,sin(α/2)<0,原式化简得-sin(α/2)
多给分,给详细步骤

3π/2<α<3π, cosα > 0
√[1/2+1/2*√(1/2+1/2cos2α)]
= √{1/2+1/2*√[(1/2)(1+cos2α)]
= √{1/2+1/2*√[(1/2)*2(cosα)²]
= √[1/2+(1/2)*cosα]
= √[(1/2)(1+cosα)]
= √{(1/2)*2[cos(α/2)]...

全部展开

3π/2<α<3π, cosα > 0
√[1/2+1/2*√(1/2+1/2cos2α)]
= √{1/2+1/2*√[(1/2)(1+cos2α)]
= √{1/2+1/2*√[(1/2)*2(cosα)²]
= √[1/2+(1/2)*cosα]
= √[(1/2)(1+cosα)]
= √{(1/2)*2[cos(α/2)]²}
=√cos(α/2)]²
=|cos(α/2)|
3π/2<α<3π
3π/4<α/2<3π/2
cos(α/2) < 0
原式 = -cos(α/2)

收起