求证:tan a/2=(1-cos)/sin a=sin a/(cos a+1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 23:48:29
x){{f$)$3WP79XS8(b&5"
چ6IEk/!. GVɎk;3 +* 0@1# LL(Ǝ3իm <;n.gӷe{4Lh~4cbՅYq~qAb( dԑ
求证:tan a/2=(1-cos)/sin a=sin a/(cos a+1)
求证:tan a/2=(1-cos)/sin a=sin a/(cos a+1)
求证:tan a/2=(1-cos)/sin a=sin a/(cos a+1)
cos(a/2)不等于0.
tan(a/2) = sin(a/2)/cos(a/2) = 2sin(a/2)cos(a/2)/{2[cos(a/2)]^2}
= sin(a)/[1 + cos(a)]
当 sin(a/2)不等于0时,
tan(a/2) = sin(a/2)/cos(a/2) = 2[sin(a/2)]^2/[2sin(a/2)cos(a/2)]
= [1 - cos(a)]/sin(a)