已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证S△DEF+S△CEF= 12S△ABC;当∠EDF

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 10:31:10
已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证S△DEF+S△CEF= 12S△ABC;当∠EDF
xWkSW+3RV@h7P@gKm;'/D4U'F;CTEfSȞ! ׅI:i9罜>9яs' OC>viXHWħ..F/SX,gh[R^C{ɗOP(O ˯ /X5+ YINbio] H^,[^߷ 9YɶėaB:Գ0 ߌhŏ֋UTnUj+sKeB$<vfe&}OOBs`٢Nʠ~ѓ~q9]RTdJYV›vݬ6+j{`q 9=ݗ}u֛Kϯmt%i/  P;"2{$oO01#ss "lDgfc&7fNG,Qn6!)L"f 4`0`%,A3:pmV5 -Qt:A NF-<L?GЍjp-v kmΌF(t%xZ:w`~Jcr; 憪c^2rmVh x N}}FtknB,d%G׸>}9(

已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证S△DEF+S△CEF= 12S△ABC;当∠EDF
已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D点旋转,它的
两边分别交AC、CB(或它们的延长线)于E、F.当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证S△DEF+S△CEF= 12S△ABC;当∠EDF绕D点旋转到DE和AC不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,S△DEF、S△CEF、S△ABC又有怎样的数量关系?请写出你的猜想,不需证明.

已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证S△DEF+S△CEF= 12S△ABC;当∠EDF
S△DEF+S△CEF= 12S△ABC 仍然成立.
证明:当∠EDF绕点D旋转到DE⊥AC于E时,
连接CD.∵Rt△ABC中,AC=BC,即△ABC为等腰直角三角形.
又∵D为AB边的中点,
∴CD=BD,∠ECD=∠FBD=45°,∠CDB=90°,
又∵∠EDF=90°,
∴∠EDF-∠CDF=∠CDB-∠CDF,即∠CDE=∠BDF,
∴△CDE≌△BDF,
∴S△CDE=S△BDF,
∴S△DEF+S△CEF=S△CDE+S△CDF=S△BDF+S△CDF=S△BCD= 12S△ABC,
得证.
当∠EDF绕点D旋转到DE和AC不垂直时:
猜想 S△DEF+S△CEF= 12S△ABC,
证明:连接CD,
同理易得△CDE≌△BDF,
∴S△CDE=S△BDF,
∴S△DEF+S△CEF=S四边形DECF=S△CDE+S△CDF=S△DBF+S△CDF=S△BCD,
又S△BCD= 12S△ABC,
则S△DEF+S△CEF= 12S△ABC.
故答案是:S△DEF+S△CEF= 12S△ABC,S△DEF+S△CEF= 12S△ABC.

S△DEF+S△CEF= 1/2S△ABC依然成立。连CD证全等,利用面积割补法就可证明。

这里有↓

S△DEF+S△CEF=S△ABC 仍然成立.
证明:当∠EDF绕点D旋转到DE⊥AC于E时,
连接CD.∵Rt△ABC中,AC=BC,即△ABC为等腰直角三角形.
又∵D为AB边的中点,
∴CD=BD,∠ECD=∠FBD=45°,∠CDB=90°,
又∵∠EDF=90°,
∴∠EDF-∠CDF=∠CDB-∠CDF,即∠CDE=∠BDF,
∴...

全部展开

S△DEF+S△CEF=S△ABC 仍然成立.
证明:当∠EDF绕点D旋转到DE⊥AC于E时,
连接CD.∵Rt△ABC中,AC=BC,即△ABC为等腰直角三角形.
又∵D为AB边的中点,
∴CD=BD,∠ECD=∠FBD=45°,∠CDB=90°,
又∵∠EDF=90°,
∴∠EDF-∠CDF=∠CDB-∠CDF,即∠CDE=∠BDF,
∴△CDE≌△BDF,
∴S△CDE=S△BDF,
∴S△DEF+S△CEF=S△CDE+S△CDF=S△BDF+S△CDF=S△BCD=S△ABC,
得证.
(2)当∠EDF绕点D旋转到DE和AC不垂直时,
猜想 S△DEF+S△CEF=S△ABC,
证明:连接CD,
同理易得△CDE≌△BDF,
∴S△CDE=S△BDF,
∴S△DEF+S△CEF=S四边形DECF=S△CDE+S△CDF=S△DBF+S△CDF=S△BCD,
又S△BCD=S△ABC,
则S△DEF+S△CEF=S△ABC.
故答案是:S△DEF+S△CEF=S△ABC,S△DEF+S△CEF=S△ABC.

收起

aaa

图2成立;图3不成立

证明图2:

过点D作DM⊥AC,DN⊥BC

则∠DME=∠DNF=∠MDN=90°

再证∠MDE=∠NDF,DM=DN

有△DME≌△DNF,∴S△DME=S△DNF

∴S四边形DMCN=S四边形DECF-S△DEF+S△CEF

由信息可知S四边形DMCN=1/2S△ABC

∴S△DEF+S△CEF=1/2S△ABC

图3不成立,S△DEF、S△CEF、S△ABC的关系是:S△DEF-S △CE=1/2S△ ABC

:图2成立;图3不成立
证明图2:
过点D作DM⊥AC,DN⊥BC
则∠DME=∠DNF=∠MDN=90°
再证∠MDE=∠NDF,DM=DN
有△DME≌△DNF,∴S△DME=S△DNF
∴S四边形DMCN=S四边形DECF-S△DEF+S△CEF
由信息可知S四边形DMCN=1/2S△ABC
∴S△DEF+S△CEF=1/2S△...

全部展开

:图2成立;图3不成立
证明图2:
过点D作DM⊥AC,DN⊥BC
则∠DME=∠DNF=∠MDN=90°
再证∠MDE=∠NDF,DM=DN
有△DME≌△DNF,∴S△DME=S△DNF
∴S四边形DMCN=S四边形DECF-S△DEF+S△CEF
由信息可知S四边形DMCN=1/2S△ABC
∴S△DEF+S△CEF=1/2S△ABC
图3不成立,S△DEF、S△CEF、S△ABC的关系是:S△DEF-S △CE=1/2S△ ABC

收起

已知:在Rt△ABC中,∠C=90°,BC=200cm,AC/AB=9/41,求AC,AB的长过程```快`` 如图、已知Rt△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,求证:AC+CD=AB 如图,已知Rt△ABC中,∠C=90°,AC=BC,AD是∠A的角平分线.求证;AC+CD=AB 如图所示,已知:Rt△ABC中,∠C=90°,AC=BC,AD是∠A的平分线.求证:AC+CD=AB 如图所示,已知RT△ABC中,∠C=90°,AC=BC,AD是∠A的平分线,请说明AC+CD与AB的关系 如图所示,已知Rt△ABC中,∠C=90°,AC=BC,AD是∠A的平分线. 请说明:AC+CD与AB的关系 已知:如图,在Rt△ABC中,∠ACB=Rt∠,AC=4,BC=3将△ABC沿AB方向平移至△A'B'C',使A'C'经过BC的中点D (1)求已知:如图,在Rt△ABC中,∠ACB=Rt∠,AC=4,BC=3将△ABC沿AB方向平移至△A'B'C',使A'C'经过BC的中点D(1)求证:A 已知:如图,在Rt△ABC中,∠ACB=Rt∠,AC=4,BC=3将△ABC沿AB方向平移至△A'B'C',使A'C'经过BC的中点D (1)求已知:如图,在Rt△ABC中,∠ACB=Rt∠,AC=4,BC=3将△ABC沿AB方向平移至△A'B'C',使A'C'经过BC的中点D(1)求证:A 已知Rt△ABC中,∠ACB=90,CD⊥AB,求证:AC²:BC²=AC:BD 在Rt△ABC中,∠C=Rt∠,AB=根号10,AC:BC=2:1,求Rt△ABC的周长和面积 已知rt△abc中,∠c==90°,bc==根号2,ac==根号6,解这个直角三角形 已知RT△ABC中,∠C=90°,AC=10,BC:AB=12:13,则△的周长和面积是多少? 已知Rt△ABC中,AC=3,BC= 4,过直角顶点C作CA1⊥AB,垂足为A1,再过A1作A1C1⊥BC在RtΔABC中,AB=3,BC=4, ∠ABC=90度,过B作BA1⊥AC,过A1作A1B1⊥BC,得阴影RtΔA1B1B;再过B1作B1A2⊥AC,过A2作A2B2⊥BC,得阴影RtΔA2B2B1;…… 已知RT△ABC中,∠C=90°,tanA=四分之三,BC=12,求AC/AB、cosB 如图,已知Rt△ABC中,∠C=90°,BC=10,AC=6,DE是AB的中垂线,求CE,BE的长. 如图,已知Rt△ABC中,∠C=90°,BC=10,AC=6,DE是AB的中垂线,求CE,BE的长. 已知:Rt△ABC中,∠C=90°,AB=8,BC=3倍根号2,求AC 在Rt△ABC中,∠C=90°,已知BC=3,AC=4求AB边上的高CD与sinA的值.