已知椭圆的中点在原点,左焦点F1 右焦点F2 均在X轴上,A为椭圆的右顶点,B为短轴的端点 P是椭圆上已知椭圆的中点在原点,左焦点F1 右焦点F2 均在X轴上,A为椭圆的右顶点 B为短轴的端点 P是椭圆上

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 22:24:53
已知椭圆的中点在原点,左焦点F1 右焦点F2 均在X轴上,A为椭圆的右顶点,B为短轴的端点 P是椭圆上已知椭圆的中点在原点,左焦点F1 右焦点F2 均在X轴上,A为椭圆的右顶点 B为短轴的端点 P是椭圆上
xUOOQ*ݺ˺[IM&K6@&@EhRV`AӢU ݷ 'B>kxhf7fzK(G5[Z5#U\(扱vR@bpNe0Z]kOk]`?lg?FF_ce 3Wy.>;kR$H0 Oit]V0gcُz&7N:f(dW/y+m}yW_+ԽMﴍ3ғEs$E ǯ3Λ8L刺h,.if(??Ps`*@Xy^XWa|r t< rs)sL&&ĸ/D!B.rDH#B;g<|>'"F 2aG#|Ъy 'd,gRQ?0P4` cvf,y&׆=w.Z~f Gc؃{.F4̂%s6${HOfVc#C? X^~fdNO:O.WUmy@ *p JFugM))(J˜P(D903]oӋ,0 $QnTO5/Cpa1jJ8C R;YX$4Svsf_61YsF-UL)1cc]6BZ`f[pߖ C;hNn 9=i[Eӡ ج

已知椭圆的中点在原点,左焦点F1 右焦点F2 均在X轴上,A为椭圆的右顶点,B为短轴的端点 P是椭圆上已知椭圆的中点在原点,左焦点F1 右焦点F2 均在X轴上,A为椭圆的右顶点 B为短轴的端点 P是椭圆上
已知椭圆的中点在原点,左焦点F1 右焦点F2 均在X轴上,A为椭圆的右顶点,B为短轴的端点 P是椭圆上
已知椭圆的中点在原点,左焦点F1 右焦点F2 均在X轴上,A为椭圆的右顶点 B为短轴的端点 P是椭圆上一点,PF1垂直于X 轴 ,PF2∥AB,则此椭圆的离心率为?

已知椭圆的中点在原点,左焦点F1 右焦点F2 均在X轴上,A为椭圆的右顶点,B为短轴的端点 P是椭圆上已知椭圆的中点在原点,左焦点F1 右焦点F2 均在X轴上,A为椭圆的右顶点 B为短轴的端点 P是椭圆上
根据题意:设椭圆的方程为[x²/a²]+[y²/b²]=1,假设F1为左焦点,F2为右焦点,那么可得F1(-c,0),F2(c,0),A(a,0),B(0,b).
因为p是椭圆上一点且PF2平行于AB,
所以,PF2直线方程为y=[(0-b)/(a-0)]*(x-c),
又p是椭圆上一点且PF1垂直于x轴
所以,当x=-c时,y=(-b/a)*(-2c)=2bc/a,P(-c,2bc/a)
[(-c)²/a²]+[(2bc/a)²/b²]=1,
(c²/a²)+[(2c/a)²=1,
(c²)+4c²=a²,
5c²=a²,
e=(根号5)/5.

已知椭圆的中点在原点,左焦点F1 右焦点F2 均在X轴上,A为椭圆的右顶点 B为短轴的端点 P是椭圆上一点,PF₁垂直于X 轴 ,PF₂∥AB,则此椭圆的离心率为???
设椭圆方程为x²/a²+y²/b²=1;F₁(-c,0);F₂(c,0);A(a,0);B(0,b)。
点P(-c,y),点P...

全部展开

已知椭圆的中点在原点,左焦点F1 右焦点F2 均在X轴上,A为椭圆的右顶点 B为短轴的端点 P是椭圆上一点,PF₁垂直于X 轴 ,PF₂∥AB,则此椭圆的离心率为???
设椭圆方程为x²/a²+y²/b²=1;F₁(-c,0);F₂(c,0);A(a,0);B(0,b)。
点P(-c,y),点P在椭圆上,因此其坐标满足椭圆方程:
c²/a²+y²/b²=1,y²=b²(1-c²/a²)=b²(1-e²),y=b√(1-e²)
KPF₂=[b√(1-e²)/(-2c)=-(1/2)(b/c)√(1-e²)=-(1/2){[√(a²-c²)]/c}√(1-e²)
=-(1/2)√[(1/e²)-1]√(1-e²)=-(1/2)(1-e²)/e
KAB=-b/a=-[√(a²-c²)]/a=-√(1-e²)
∵PF₂∥AB,∴KPF₂=KAB,即有等式:(1/2)(1-e²)/e=√(1-e²),
化简得 √(1-e²)=2e,平方去根号得1-e²=4e²;于是得5e²=1,故e=√(1/5)=(√5)/5

收起