已知抛物线C,y^2=4x的焦点为F,过点K(-1,0)的直线L与C相交与A,B两点,点A关于X轴的对称点为D.,证明:点F在直线BD上.2,设向量FA×向量FB=8/9,求三角形BDK的内切圆MC的方程.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 08:44:10
已知抛物线C,y^2=4x的焦点为F,过点K(-1,0)的直线L与C相交与A,B两点,点A关于X轴的对称点为D.,证明:点F在直线BD上.2,设向量FA×向量FB=8/9,求三角形BDK的内切圆MC的方程.
xTn@$$dc> 4&)*l*YRii'I(EMMIhJIf_N[@XXs9$9n=B}YS wk]s:M"'b4ӥjӎ]r݁Q {`8= p&K 8x]8ނHYx±KyNB%; Fqm\@֒c r.H U>,?jC47o;Yby 24"!(nmﯷe; F=5ocwPevt3n 6^ˮX0:pv@QsHLYz iN7e"1g!a y}-} :{!LT혠ƫFeHѠuz|_?t_1(3`ZDi ։i:H: A#EܡChͰfFesԫ>6)tkKfTSP !#BTA5D}k @?4f4 %QR06xyπQ$ XThvɗb@y8 b[5 +5[ˇ$HAf-OΞph8<ǵ |l 3XXiR)޸{=@#6 C/f\~Zh&8ZTj.kW˒a= # 4=x2I ^

已知抛物线C,y^2=4x的焦点为F,过点K(-1,0)的直线L与C相交与A,B两点,点A关于X轴的对称点为D.,证明:点F在直线BD上.2,设向量FA×向量FB=8/9,求三角形BDK的内切圆MC的方程.
已知抛物线C,y^2=4x的焦点为F,过点K(-1,0)的直线L与C相交与A,B两点,点A关于X轴的对称点为D.
,证明:点F在直线BD上.
2,设向量FA×向量FB=8/9,求三角形BDK的内切圆MC的方程.

已知抛物线C,y^2=4x的焦点为F,过点K(-1,0)的直线L与C相交与A,B两点,点A关于X轴的对称点为D.,证明:点F在直线BD上.2,设向量FA×向量FB=8/9,求三角形BDK的内切圆MC的方程.
设A(x1,y1),B(x2,y2),D(x1,-y1),l的方程为x=my-1(m≠0).
⑴、证明:将L:x=my-1带入y²=4x并整理得y²-4my+4=0,从而y1+y2=4m,y1y2=4.
直线BD的斜率为k=(y2+y1)/(x2-x1)=(y2+y1)/[(my2-1)-(my1-1)]=4m/[m(y2-y1)]=4/(y2-y1)
∴直线BD的方程为y-y2=[4/(y2-y1)]×(x-x2)=[4/(y2-y1)]×(x-y2²/4)
令y=0,解得x=y1y2/4=1,所以点F(1,0)在直线BD上.
⑵由⑴知:
x1+x2=(my1-1)+(my2-1)=m(y1+y2)-2=4m²-2,x1x2=1
.∵向量FA=(x1-1,y1),向量FB=(x2-1,y2),
二者的积=(x1-1)(x2-1)+y1y2=8-4m²=8/9,m=±4/3,
所以l的方程为3x+4y+3=0,3x-4y+3=0,
又有⑴知y2-y1=±√(y1-y2)²=±√[(y1+y2)²-4y1y2]=±√(16m²-16)=±4√7/3
故BD斜率=4/(y2-y1)=±3/√7,
因而BD方程为3x+√7y-3=0,3x-√7y-3=0.
∵KF为∠BKD的平分线(关于x轴对称)
故可设圆心M(t,0)(-1<t<1) (圆心就在角平分线上)
m到L及BD的距离分别为(3/5)|t+1|,(3/4)|t-1|
∴(3/5)|t+1|=(3/4)|t-1|
t=1/9,t=9(舍)
∴圆M的半径r=(3/5)|t+1|=2/3.
∴圆的方程为(x-1/9)²+y²=4/9

已知抛物线c:y^2=4x的焦点为F,过F的直线l与c相交于两点A、B 求|AB|最小值 已知抛物线y^2=4x,F为抛物线的焦点且PQ为过焦点的弦,若|PQ|=8求△OPQ的面积 【紧急求】已知抛物线c :y^2=4x,直线过抛物线的焦点f且与该抛物线交于a、b两点 (点a在第一象限) (...【紧急求】已知抛物线c :y^2=4x,直线过抛物线的焦点f且与该抛物线交于a、b两点 (点 已知抛物线C:x^2=4y的焦点为F,直线l过点F交抛物线C于A、B两点已知抛物线C:x^2=4y的焦点为F,直线l过点F交抛物线C于A、B两点(1)设A(x1,y1),B(x2,y2),求1/y1+1/y2的取值范围(2)是否存在定点Q, 已知抛物线C:y2(方)=4x的焦点为F,过点K(-1,0)的直线L与C相交于A.B两点,点A关于X轴的对称点为D.抛物线C:y^2=4x①的焦点为F(1,0),设过点K(-1,0)的直线L:x=my-1, 已知过抛物线y^2=4x的焦点F的直线交抛物线为A、B两点,AF=2,则BF= 已知椭圆T的中心在原点,焦点在X轴上,离心率为√3/2,且过抛物线C:x²=4y的焦点F,求椭圆T的方程 已知抛物线y^2=2px(P大于0的焦点为F,过点F的直线角抛物线于AB两点点C在抛物线的准线上,且BC平行X轴 已知抛物线C:y^2=4x的焦点为F 直线y=2x-4与C交与A.B两点 则COSAFB为. 已知F是抛物线C:y^2=4x的焦点,过F是斜率为1的直线交C于A,B两点,设FA>FB,则FA与FB的比值为? 已知F是抛物线C:y^2=4x的焦点,过F是斜率为1的直线交C于A,B两点,设FA>FB,则FA与FB的比值为? 已知抛物线C,Y^2=4X的焦点为F,过F点的直线L与C相交于A,B,若AB等于16/3,一,求直线方程.二求AB的最小 15,已知F是抛物线C:y^2=4x的焦点,过F且斜率为K(K>0)的直线交C于A,B两点,设向量AF=3向量FB,则K等于? 圆锥曲线题目已知过抛物线y²=4x焦点F的直线与抛物线交A、B两点,过原点O的直线AO交抛物线准线于C点(2)求[AB]+[BC]的最小值 已知过抛物线y^2=4X的焦点F的弦长为36,弦所在的直线方程为 已知抛物线C的方程y^2=4x,F为抛物线的焦点,顶点在原点上(1) 求圆心在抛物线C上,且与x轴及准线都相切的圆的方程(2) 过点A(2,0)的直线l与抛物线C交于P,Q两点,F为抛物线的焦点,且向量FQ+向量FP=向 已知抛物线C的方程是:x^2=4y 求:(1)抛物线C的焦点坐标和准线方程 (2)设过抛物线C的焦点且斜率为1的已知抛物线C的方程是:x^2=4y求:(1)抛物线C的焦点坐标和准线方程(2)设过抛 已知抛物线X的平方=4y的焦点为F.过焦点F且不平行于X轴的动直线L交抛物线于AB两点,抛物线在AB两...已知抛物线X的平方=4y的焦点为F.过焦点F且不平行于X轴的动直线L交抛物线于AB两点,抛物线在AB