2)求过点(0,6)且与圆x^2+y^2+10x+10y=0切于原点的圆的方程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 12:42:54
2)求过点(0,6)且与圆x^2+y^2+10x+10y=0切于原点的圆的方程
xPJ@IX2n$f*jqSXF(KGvo* sΝ~֋~UCldwH@`%(VQ(X0jW0/|]Rr;VfbbqԱm\85qX'zOT:GaM^ 8"~1ІhnaDz:ZlkjSx̪Zfơ*o,w{?faoVpds\@|<28=+O 1

2)求过点(0,6)且与圆x^2+y^2+10x+10y=0切于原点的圆的方程
2)求过点(0,6)且与圆x^2+y^2+10x+10y=0切于原点的圆的方程

2)求过点(0,6)且与圆x^2+y^2+10x+10y=0切于原点的圆的方程
由x^2+y^2+10x+10y=0可得(x+5)^2+(y+5)^2=50
斜率明显存在
设直线y=kx+6,即kx-y+6=0
可得|k*0-0+6|/√(k^2+1)=√50
k无解
故不存在这样的直线.
另解
x^2+y^2+10x+10y=0上(0,0)切线为x+y=0,不过(0,6),故不存在这样的直线