在三角形ABC中,角A,B,C所对的边分别为a,b,c,S表示三角形ABC的面积,若acosB+bcosA=csinC.S=1/4(b^2+c^2-a^2)则∠B=?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 20:33:06
在三角形ABC中,角A,B,C所对的边分别为a,b,c,S表示三角形ABC的面积,若acosB+bcosA=csinC.S=1/4(b^2+c^2-a^2)则∠B=?
在三角形ABC中,角A,B,C所对的边分别为a,b,c,S表示三角形ABC的面积,若acosB+bcosA=csinC.S=1/4(b^2+c^2-a^2)
则∠B=?
在三角形ABC中,角A,B,C所对的边分别为a,b,c,S表示三角形ABC的面积,若acosB+bcosA=csinC.S=1/4(b^2+c^2-a^2)则∠B=?
acosB+bcosA=csinC
根据海伦公式可得:
c=csinC,
sinC=1,
C=90°
所以S=ab/2
又根据海伦公式:
sinB=cosA = (c^2+b^2-a^2)/2bc
S=1/4(b^2+c^2-a^2)
sinB =2S/bc=a/c=sinA
所以A=B=45°
6.0
15
你的题意不太清楚,不过没关系,肯定这样做了。
acosB+bcosA=csinC,sinC=(acosB+bcosA)/c
由余弦定理得,cosB=(a^2+c^2-b^2)/2ac,cosA=(b^2+c^2-a^2)/2bc,将两式代入上式
有,sinC=1,故C=π/2
因为,cosA==(b^2+c^2-a^2)/2bc,故,b^2+c^2-a^2=2bc×...
全部展开
你的题意不太清楚,不过没关系,肯定这样做了。
acosB+bcosA=csinC,sinC=(acosB+bcosA)/c
由余弦定理得,cosB=(a^2+c^2-b^2)/2ac,cosA=(b^2+c^2-a^2)/2bc,将两式代入上式
有,sinC=1,故C=π/2
因为,cosA==(b^2+c^2-a^2)/2bc,故,b^2+c^2-a^2=2bc×cosA,代入S=1/4(b^2+c^2-a^2
得S=1/4×2bc×cosA=1/2×bc×cosA,而我们知道,S=1/2×bc×sinA,
所以有,sinA=cosA,又因为C=π/2,故A=π/4,B=π/4
收起