X=arctant,y=ln(1+t^2),y=y(X),求d^2y/dX^2(即求y的二阶导数)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 18:23:20
X=arctant,y=ln(1+t^2),y=y(X),求d^2y/dX^2(即求y的二阶导数)
xjA_% $+~v%=CNO5i[$.ň+ABJxTRl  ?O=GCXI rbA[ӵ$yT

X=arctant,y=ln(1+t^2),y=y(X),求d^2y/dX^2(即求y的二阶导数)
X=arctant,y=ln(1+t^2),y=y(X),求d^2y/dX^2(即求y的二阶导数)

 

X=arctant,y=ln(1+t^2),y=y(X),求d^2y/dX^2(即求y的二阶导数)