如何证明∫[0,π]xf(sinx)dx=π∫[0,π/2]f(sinx)dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 12:44:49
如何证明∫[0,π]xf(sinx)dx=π∫[0,π/2]f(sinx)dx
xRn@|+R?kdE"k׆$vjWDh P*~ !5JB_!$=ָ~?QjI|xzG\tjm6Kڤsê Uoβ6Vr{ɻۦVrп9xpR5|WpC Ԩdɘ*Be^G2F h[A SAT002 %`*ֵbEb"o,`A1dAĒDmR+6&D.zza=a/; }jG%d0^aXci-,]`o4dix|&+4~g+$iύ2,7yvrbӆ&s}'_Q~|wgqi?<}N0~tgrMMx1_"\ڱ H!sFW- e%/烓0'hǟ

如何证明∫[0,π]xf(sinx)dx=π∫[0,π/2]f(sinx)dx
如何证明∫[0,π]xf(sinx)dx=π∫[0,π/2]f(sinx)dx

如何证明∫[0,π]xf(sinx)dx=π∫[0,π/2]f(sinx)dx
如图

计算∫[π/2,π]xf(sinx)dx
令x=π-t 得
∫[π/2,π]xf(sinx)dx=∫[π/2,0] (π-t)f(sin(π-t))d(π-t)
=∫[0,π/2] (π-t)f(sint)dt=π∫[0,π/2] f(sint)dt-∫[0,π/2]t f(sint)dt
∫[0,π]xf(sinx)dx=∫[0,π/2]t f(sint)dt+∫[π/2,π]xf(sinx)dx=π∫[0,π/2]f(sint)dt

-2sinx*(1-(sinx)^2)^0.5在[pi/2,pi] 已不满足(积分区间为0到π)∫xf(sinx)dx=(π/2)∫f(sinx)dx的分条件,

http://zhidao.baidu.com/question/341650003.html?oldq=1
满意请采纳