设函数f ( x )可导,y= f ( x )cos f ( x )的导数为( ).A:y'= f′( x )cos f ( x )- f( x )sin (f ( x )) f′( x ) B:y ′=-f′( x )sin f ( x ) C:y ′= f′( x )cos f ( x )+ f( x )sin (f ( x )) f′( x ) D:y ′= f′( x )cos f ( x )-f( x )s
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 03:27:49
x){nϦnHSPP|ڿ=:
PbPPxSѪRQ&tպ
i`83OA*PdU
@*
X&`>ͺP6IE{la ֎? J(
D 6v6#>}8$فB
设函数f ( x )可导,y= f ( x )cos f ( x )的导数为( ).A:y'= f′( x )cos f ( x )- f( x )sin (f ( x )) f′( x ) B:y ′=-f′( x )sin f ( x ) C:y ′= f′( x )cos f ( x )+ f( x )sin (f ( x )) f′( x ) D:y ′= f′( x )cos f ( x )-f( x )s
设函数f ( x )可导,y= f ( x )cos f ( x )的导数为( ).
A:y'= f′( x )cos f ( x )- f( x )sin (f ( x )) f′( x )
B:y ′=-f′( x )sin f ( x )
C:y ′= f′( x )cos f ( x )+ f( x )sin (f ( x )) f′( x )
D:y ′= f′( x )cos f ( x )-f( x )sin (f ( x ))
设函数f ( x )可导,y= f ( x )cos f ( x )的导数为( ).A:y'= f′( x )cos f ( x )- f( x )sin (f ( x )) f′( x ) B:y ′=-f′( x )sin f ( x ) C:y ′= f′( x )cos f ( x )+ f( x )sin (f ( x )) f′( x ) D:y ′= f′( x )cos f ( x )-f( x )s
A
设函数f(x) 可导,又y=f(-x) ,则 y'=
设f(u)为可导函数,且y=f(sinx)+sinf(x),求y’
设f(x)为可导函数,y=sin{f[sinf(x)]} dy/dx=
设f(x)可导,求函数y=f(x^2)的导数
设f(x)为可导函数,求dy/dx:y=f(arcsin(1/x))
设f x 为可导函数,y=f^2(x+arctanx),求dy/dx
设函数f(x)可导,且y=f(x2),则 dy/dx=?
设函数f(x)可导,且f(x)不等于零,证明:曲线y=f(x)与y=f(x)sinx在交点处相切
设函数y=f(x)可导,则函数f(x²)的微分为
设y=f^2(x^2),其中函数fx可导,求y导数
设函数f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f′(x)可能( )
设函数f ( x )可导,y= f ( x )cos f ( x )的导数为( ).A:y'= f′( x )cos f ( x )- f( x )sin (f ( x )) f′( x ) B:y ′=-f′( x )sin f ( x ) C:y ′= f′( x )cos f ( x )+ f( x )sin (f ( x )) f′( x ) D:y ′= f′( x )cos f ( x )-f( x )s
设y=f(x)可导、求函数f(x^2)的倒数
设函数y=f(e^-x)其中f(x)可微,则dy=
设函数f(x)可导,y=f(x的3次方)则dy/dx是?
设f(u)可导,函数y=y(x)由x^y+y^x=f(x^2+y^2)所确定,则dy=
设z=f(x/y)且f为可微函数,则dz=
设f(x)为可导函数,求dy/dx (1)y=f(tanx) (2)y=f(x^2)+lnf(x)