f(x)在【a,b】上连续,f(a)=f(b)=0,一阶导数乘积大于零,证f(x)在[a,b]内至少有一个零点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 11:41:26
xN@_ŝmRٗa1 1QCteAE4j7
pW-.L2s?#'Pim4r]Vi$*F'k^a~Z4~f*qܺw}=>(r]Jt|t8&*|4Zngb!hl-Jg1uyQ9U\0)]MyE)@O[5 EyG{)j%4Ě/afwU;?$VJe\pA?hxt&
!=B=BYJ>t
f(x)在【a,b】上连续,f(a)=f(b)=0,一阶导数乘积大于零,证f(x)在[a,b]内至少有一个零点
f(x)在【a,b】上连续,f(a)=f(b)=0,一阶导数乘积大于零,证f(x)在[a,b]内至少有一个零点
f(x)在【a,b】上连续,f(a)=f(b)=0,一阶导数乘积大于零,证f(x)在[a,b]内至少有一个零点
f'(a)f'(b)>0,不妨设f'(a)>0,f'(b)>0
则:lim[x→a+] [f(x)-f(a)]/(x-a)>0
由极限的局部保号性,存在a的右邻域(a,a+δ),使得当x∈(a,a+δ)时,有[f(x)-f(a)]/(x-a)>0
由于x>a,因此f(x)>f(a),在此邻域内取x1,则f(x1)>f(a)=0
同理可证:存在b的左邻域(b-δ,b),使得当x∈(b-δ,b)时,有[f(x)-f(b)]/(x-b)>0
由于x
f(x)在a到b上连续,f(x)
设函数f 在[a,b]上连续,M=max|f(x)|(a
函数f(x)在闭区间[a,b]上严格单调且连续,f(a)=A,f(b)=B,证明f([a,b])=(A,B)
设f(x)在[a,b]上连续,且a
设函数f(x)在[a,b]上连续,a
设f(x)在[a,b]上连续,且a
f(x)在[a,b]上连续a
若函数f(x)在[a,b]上连续,a
若f(x)在[a,b]上连续,a
f(x)在[a,b]上连续,a
设f(x)在[a,b]上连续,且a
设f(x)在[a,b]上连续,a
设函数f(x)在[a,b]上连续,a
若函数f(x)在[a,b]上连续,a
若函数f(x)在[a,b]上连续,a
设函数f(x)在[a,b]上连续,在(a,b)内有二阶导数,且有f(a)=f(b)=0,f(c)>0(a
设f'(x)在[a,b]上连续,在(a,b)内二阶可导,且f(a)=f(b)=0,f(c)>0,a
设f(x)在[a,b]上连续,在(a,b)内二阶可导,且f(a)f(b)<0,f'(c)=0.a