求导数(lnx)^2的原函数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 18:30:49
求导数(lnx)^2的原函数
x){=ϦnɫЌ3z>i{B6IEaSf>X URa[eE+R4\MJ4Y# G"M( dbWhY  n)8e+5dg-OzNHLm}@Ěg_\g H0O;ڞNX~|E `Bn(HMlzYMݓ]=@;솪GRJ

求导数(lnx)^2的原函数
求导数(lnx)^2的原函数

求导数(lnx)^2的原函数
答:
∫(lnx)^2dx=x(lnx)^2-∫x*d((lnx)^2)
=x(lnx)^2-∫x*2lnx/xdx
=x(lnx)^2-2∫lnxdx
=x(lnx)^2-2x*lnx+2∫xd(lnx)
=x(lnx)^2-2x*lnx+2∫d(x)
=x(lnx)^2-2x*lnx+2x+C(C为任意实数)
故(lnx)^2的原函数为x(lnx)^2-2x*lnx+2x+C(C为任意实数).

积分吧?

x((lnx)^2-2lnx+2)

x(lnx)^2-2x*lnx+2x+C

二分之(lnx)^2