求证 (1-2sinθcosθ)/(cos^2θ-sin^2θ)=(cos^θ-sin^2θ)/(1+2sinθcosθ)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 13:04:30
求证 (1-2sinθcosθ)/(cos^2θ-sin^2θ)=(cos^θ-sin^2θ)/(1+2sinθcosθ)
x){F C]̼s;qFvA-XI@_PYMR>M/OYdg?,tvjUY'jC`;D0ab`‰ }$0SP.dGדOv IXݣnif`Aqޗf<7[6yvsF ^W*)ZiB8N,B?\A:QT`Q"3]S9<4Bp3

求证 (1-2sinθcosθ)/(cos^2θ-sin^2θ)=(cos^θ-sin^2θ)/(1+2sinθcosθ)
求证 (1-2sinθcosθ)/(cos^2θ-sin^2θ)=(cos^θ-sin^2θ)/(1+2sinθcosθ)

求证 (1-2sinθcosθ)/(cos^2θ-sin^2θ)=(cos^θ-sin^2θ)/(1+2sinθcosθ)
用a代替吧
左边=(sin²a+cos²a-2sinacosa)/(cos²a-sin²a)
=(cosa-sina)²/(cosa-sina)(cosa+sina)
=(cosa-sina)/(cosa+sina)
上下乘(cosa+sina)
=(cosa-sina)(cosa+sina)/(cosa+sina)²
=(cos²a-sin²a)/(sin²a+cos²a+2sinacosa)
=(cos²a-sin²a)/(1+2sinacosa)=右边
命题得证

(1-2sinθcosθ)/(cos^2θ-sin^2θ)
=(cos^2θ+sin^2θ-2sinθcosθ)/[(cosθ-sinθ)(cosθ+sinθ)]
=(cosθ-sinθ)^2/[(cosθ-sinθ)(cosθ+sinθ)]
=(cosθ-sinθ)/(cosθ+sinθ)
=(cosθ-sinθ)(cosθ+sinθ)/[(cosθ+sinθ)(cosθ+sinθ)]
=(cos^θ-sin^2θ)/(1+2sinθcosθ)