设X.Y满足约束条件{3x-y-6≤0 x-y+2≥0 x≥0 y≥0}若目标函数z=ax+by (a>0,b>0)的最大值为12,则a^2/9 +b^2/4的最小值不等式表示的平面区域如图所示阴影部分,当直线ax+by=z(a>0,b>0)过直线x-y+2=0与

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 06:45:34
设X.Y满足约束条件{3x-y-6≤0 x-y+2≥0 x≥0 y≥0}若目标函数z=ax+by (a>0,b>0)的最大值为12,则a^2/9 +b^2/4的最小值不等式表示的平面区域如图所示阴影部分,当直线ax+by=z(a>0,b>0)过直线x-y+2=0与
xRN@~)kŤE4&(bbD !P[|-'^i /;?}Lo\ x'+*P7Xe#%)yp

设X.Y满足约束条件{3x-y-6≤0 x-y+2≥0 x≥0 y≥0}若目标函数z=ax+by (a>0,b>0)的最大值为12,则a^2/9 +b^2/4的最小值不等式表示的平面区域如图所示阴影部分,当直线ax+by=z(a>0,b>0)过直线x-y+2=0与
设X.Y满足约束条件{3x-y-6≤0 x-y+2≥0 x≥0 y≥0}若目标函数z=ax+by (a>0,b>0)的最大值为12,
则a^2/9 +b^2/4的最小值
不等式表示的平面区域如图所示阴影部分,
当直线ax+by=z(a>0,b>0)过直线x-y+2=0与直线3x-y-6=0的交点(4,6)时,
目标函数z=ax+by(a>0,b>0)取得最大12,
即4a+6b=12,即2a+3b=6
则a^2/9 +b^2=(3-3/2b)^2/9 +b^2/4的最小值是1/2
最后一步看不懂

设X.Y满足约束条件{3x-y-6≤0 x-y+2≥0 x≥0 y≥0}若目标函数z=ax+by (a>0,b>0)的最大值为12,则a^2/9 +b^2/4的最小值不等式表示的平面区域如图所示阴影部分,当直线ax+by=z(a>0,b>0)过直线x-y+2=0与
(3-3/2b)^2/9+b^2/4=(9-9b+9/4b²)/9+b²/4=1-b+b²/4+b²/4=1-b+b²/2
它的最值你会求吧?
为当b=-b/2a(对称轴时)=1时有最值为
1-1+1/2=1/2