[2sin(π/12)sin(nπ/6)]/2sin(π/12)={cos[(2n-1)π/12]-cos[(2n+1)π/12]}/2sin(π/12)我想知道这是怎么变成的?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 13:04:01
xPN@=
ٔ'iz O^ј"&Z
U#C
ME['v/\6͋2ovff5-p[kds+wq֏ݎJ[LW"ZISOK_88f4hoD^|#ٞfpwaC{4%)z}WqZWsް9 EN༤9)\Ҍ`23
aaSJf˒KEdD60H~VforOޢUd)w4ْbCv6|%W
[2sin(π/12)sin(nπ/6)]/2sin(π/12)={cos[(2n-1)π/12]-cos[(2n+1)π/12]}/2sin(π/12)我想知道这是怎么变成的?
[2sin(π/12)sin(nπ/6)]/2sin(π/12)={cos[(2n-1)π/12]-cos[(2n+1)π/12]}/2sin(π/12)
我想知道这是怎么变成的?
[2sin(π/12)sin(nπ/6)]/2sin(π/12)={cos[(2n-1)π/12]-cos[(2n+1)π/12]}/2sin(π/12)我想知道这是怎么变成的?
分母我就不分析了 分子的转化用到了三角函数中的积化和差公式 sina*sinb=-(cos(a+b)-cos(a-b))/2
a=nπ/6 b=π/12 代入积化和差即可 这三角函数的变化熟能生巧 望楼主明白
lim(n→∞) (1/n)[sin(π/n)+sin(2π/n)+…+sin(nπ/n)]=?
[2sin(π/12)sin(nπ/6)]/2sin(π/12)={cos[(2n-1)π/12]-cos[(2n+1)π/12]}/2sin(π/12)我想知道这是怎么变成的?
sin(n*π/2)*sin(n*π/3)*sin(n*π/4)*...*sin(n*π/n-1) 求化简成一个关于n的表达式,
判断级数收敛性:sin π/6 + sin 2π/6 +...+ sin nπ/6 用定义.答案提示是先乘以2sinπ/12...
令n趋近于无穷大,且n存在,求sin(π/n)+sin(2π/n)+sin(3π/n)+...+sin(π)=?.
计算,sin(π/12)-sin(5π/12)+2sin(π/8)sin(3π/8)
当n趋于无穷时,求[sin(π/n)/(n+1)+sin(2π/n)/(n+1/2)+.sinπ/(n+1/n)]的极限
sin(π/n)的收敛性
n大于等于1,θ不是π的倍数,求证sinθ+sin3θ+...+sin((2n-1)θ)=sin^2(nθ)/sinθ
化简sin×[a+(2n+1)π]+2sin×[a-(2n+1)π]/sin(a-2nπ)coS(2nπ-a) (n属于Z)
lim[sinπ/(√n^2+1)+sinπ/(√n^2+2)+...+sinπ/√n^2+n),n—>无穷
sin(nπ+π/2n)条件收敛
级数(1/n) × sin(πn/2)的敛散性
级数(1/n) × sin(πn/2)的敛散性
求∑sin(n^2+1)π/n条件收敛
an=sin(nπ/2),n→无限,极限.
求高手解用定义判别这个级数的收敛性 sin(π/6)+sin(2π/6)+.+sin(nπ/6)+...
sin^2(π/3-x)+sin^2(π/6+x)