数列an满足a1=3/2,a(n+1)=an^2-an+1则m=1/a1+1/a2````1/a2009整数部分是2010黄冈模拟

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 05:52:21
数列an满足a1=3/2,a(n+1)=an^2-an+1则m=1/a1+1/a2````1/a2009整数部分是2010黄冈模拟
xRJ@~=ԸPl^D,/PJB h+*bFk{+8& M!gf'7Jj_ e[VEXcP7uT@_u=t 㦺2L6c5請{mG8XcX[!1H@Iā]/eAS[9putf-.49zEZT+JfO#ZVS,SoX 23zi5 Vp biѾCy3qݐԓrVhL?ñ.rC

数列an满足a1=3/2,a(n+1)=an^2-an+1则m=1/a1+1/a2````1/a2009整数部分是2010黄冈模拟
数列an满足a1=3/2,a(n+1)=an^2-an+1则m=1/a1+1/a2````1/a2009整数部分是
2010黄冈模拟

数列an满足a1=3/2,a(n+1)=an^2-an+1则m=1/a1+1/a2````1/a2009整数部分是2010黄冈模拟
a(n+1)=an^2-an+1
a(n+1)-1 =an(an -1)
两边取倒数
1/[a(n+1)-1]=1/[an(an -1)]=1/(an -1) -1/an
就是
1/an =1/(an -1) -1/[a(n+1)-1]
所以
1/a1 = 1/(a1 -1) -1/(a2-1)
1/a2 =1/(a2-1) -1/(a3-1)

1/a2009 =1/(a2009-1) -1/(a2010-1)
1/a2010 =1/(a2010-1) -1/(a2011-1)
累加
m =1/(a1-1) -1/(a2011 -1)=2 -1/(a2011 -1)
又因为
a(n+1)=an^2-an+1=(an -1/2)^+3/4
==>a2 =7/4
a3 =17/8 >2
数列递增
.==>a2011 >2
1/(a2011 -1) 1

1