如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60o,PA=AC=a,PB=PD=√2a,点E在PD上,且PE:ED=2:1在棱PC上是否存在一点F,使BF‖平面AEC?证明结论——————如何用补全四棱柱的方法证明?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 11:33:56
如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60o,PA=AC=a,PB=PD=√2a,点E在PD上,且PE:ED=2:1在棱PC上是否存在一点F,使BF‖平面AEC?证明结论——————如何用补全四棱柱的方法证明?
xSn@|rbȁC:˾Bx DRAB[KppxS_78ɲ|X+9!XzۣӰ'ry 04ĎA ׏BLAuu>(TIt03!%=$b`Q (P#_ˋ>j`c-NOΦpbl/h6|{Fq|2/nqaoNj^SU'ZT~lz)'HC)lxp_IxӋ6`>ønp #'u?ӈ7}sZE/7{K^Ƞ` \wRh+{R4t?a\/ .2,`~*c"S64ThEl' 3x6u? f4_$3p5ɫ, (f%V.Mp-2 ޼/=5dR d,S X6eQ{V>.%;j

如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60o,PA=AC=a,PB=PD=√2a,点E在PD上,且PE:ED=2:1在棱PC上是否存在一点F,使BF‖平面AEC?证明结论——————如何用补全四棱柱的方法证明?
如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60o,PA=AC=a,PB=PD=√2a,点E在PD上,且PE:ED=2:1
在棱PC上是否存在一点F,使BF‖平面AEC?证明结论——————如何用补全四棱柱的方法证明?

如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60o,PA=AC=a,PB=PD=√2a,点E在PD上,且PE:ED=2:1在棱PC上是否存在一点F,使BF‖平面AEC?证明结论——————如何用补全四棱柱的方法证明?
存在,F为PC的中点.
因为,∠ABC=60°,ABCD是菱形
所以,AB=BC=CD=AD=a=PA 又因为PB=PD=√2a
所以,△PAB 、△PAD为直角三角形
所以,PA⊥AB、PA⊥AD
所以,PA⊥平面ABCD
补全四棱柱ABCD-PB'C'D',AE交DD'于G,取PC交BD'于K,AC中点H,所以GH属于平面AEC
因为PE:ED=2=PA:DG
所以G为DD'中点
在△BDD'中,H为BD中点
所以HG//BD'
所以BK//HG
又因为CK交平面ACE与点C且CK不属于平面ACE,所以K不属于平面ACE
综上所述,BK平行于平面ACE上的直线HG,且BK不在平面ACE上,
得出结论:BK//平面ACE
所以存在F,使BF//平面AEC,F即为K点所在位置

如图在四棱锥P—ABCD中,底面ABCD是菱形, 如图,在四棱锥P一ABCD中,底面ABCD是菱形,PA垂直ABcD,M为PD的中点1求证PB 如图4,在四棱锥P-ABCD中,侧面PAD是正三角形,底面ABCD是边长为2的菱形, 如图,在四棱锥o-abcd中,底面abcd是边长为一的菱形,abc=45 如图,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD是等边三角形,且平面PAD垂直于底面ABCD.求二面角A-BC-P的大小. 如图,在四棱锥P-ABCD中,底面ABCD是平行四边形… 如图,在底面是菱形的四棱锥P—ABCD中,∠BDA=60°,PA=PD,E为PC的中点.(2)求证:PB⊥BC注:PD不垂直底面ABCD 如图,如图,在四棱锥S-ABCD中,底面ABCD是菱形,SA⊥底面ABCD,M为SA的中点,N为CD的中点.如图,在四棱锥S-ABCD中,底面ABCD是菱形,SA⊥底面ABCD,M为SA的中点,N为CD的中点.(Ⅰ)证明:平面SBD⊥平面SAC;( 如图,在四棱锥P-ABCD中,侧面PAB为正三角形,且与底面ABCD垂直,已知ABCD是边长为2的菱形,角BAD=60°,PA//平面BDM,求证 M为PC的中点 如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,点M,N分别为BD,PA的中点,PA=AB=2 如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°,若PA=AB,求二面角A-PD-B的余弦值. 如图在底面为平行四边形的四棱锥P-ABCD中 求解如何求体积 如图在四棱锥P-ABCD中,底面ABCD是∠DAB=60°的菱形,PA=PD,G为AD的中点求证AD垂直面PGB 如图,在底面是菱形的四棱锥P-ABCD中,点E在PD上,且PE/ED=2/1,在棱PC上是否存在一点F,是BF∥明面AEC 证明 如图:在底面为菱形的四棱锥P-ABCD中,PA=PC.PD=PB,点E是PD的中点.求证:AC垂直PB,PB平行面AEC 如图,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥底面ABCD,AC=2倍根号2 ,PA=2,E是PC上的一点,PE=2EC.如图,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥底面ABCD,AC=2倍根号2 ,PA=2,E是PC上的一点,PE=2EC.(Ⅰ)证明:PC⊥平 如图,在四棱锥P-ABCD中,底面ABCD是矩形,四条侧棱长都相等求证:平面PAC垂直平面PBCD 如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点, 如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点,已知AB=2,AD=2√2,PA=2,建立空间直角坐标系如何求E点的坐标,