如图,已知正方形ABCD中,E为AD上一点,BF平分∠EBC交DC于点F.求证:BE=AE+CF

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 13:30:20
如图,已知正方形ABCD中,E为AD上一点,BF平分∠EBC交DC于点F.求证:BE=AE+CF
xTnGd;ꪂiv|'3$+!Q Y%1`/xr{z<3 6uu9+>.pV(IAs!%i_]ZHrM~y =YTŏ>qgES_f҅;soE#NL :b(F 1*^wVXn-X81Txx(4C \bM#ar*KC^P$!ȐssͯI vq/T9X3&Hb=s;) #QDFC%^9vH9R ^S$I4IJ2(g5{,&oZ흤Ê4҅K=;z[ -UȊXqpcu頿VZ^kwsȚ&"=V2nz:EV$-CӺ@HVyUKlևPUENHO9Pɭ1$0$0^Ig* BFr9 3I刊D$DslAFJaΊ堵Z(3vns;B?} z+?k͟_립ǃ܏cXK'<;-ǪKn9+a:"V#pddx

如图,已知正方形ABCD中,E为AD上一点,BF平分∠EBC交DC于点F.求证:BE=AE+CF
如图,已知正方形ABCD中,E为AD上一点,BF平分∠EBC交DC于点F.求证:BE=AE+CF

如图,已知正方形ABCD中,E为AD上一点,BF平分∠EBC交DC于点F.求证:BE=AE+CF

延长DA至G使AG=CF
又因为AB=CB, 角BAG=角BCF=90
所以三角形AGB全等于三角形CFB
所以GE=GA+AE=AE+CF
而角G=角BFC=角ABF=角ABE+角EBF
=角ABE+角FBC
=角ABE+角GBA=角GBE
所以GE=BE
所以BE=AE+CF

如上图 以B为旋转中心 旋转BFC,使得BC与BA重合 那么 ∠1=∠4 CF=AF' ∠F'=∠BFC

因为 BF平分∠EBC 所以 ∠4+∠3=∠1+∠3=90-∠2=90-∠1=∠BFC=∠F'

所以三角形F'EB是等腰三角形,所以BE=F'E=AF'+AE=CF+AE