高数微积分题一道The base of a circular fence with radius 10 m is given by x = 10 cos t; y = 10 sin t.Theheight of the fence varies from 3 m to 5 m such that,at position (x,y),the height is given bythe function h(x,y) = 4 + 0.01(x2 -y2).Suppos

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:28:12
高数微积分题一道The base of a circular fence with radius 10 m is given by x = 10 cos t; y = 10 sin t.Theheight of the fence varies from 3 m to 5 m such that,at position (x,y),the height is given bythe function h(x,y) = 4 + 0.01(x2 -y2).Suppos
xn@_P %[Jg6mX[iEU!U" UBj(d+0`â Vl<>s?صhf8>gKWi;~gb 1i7q  c -|v`& $SDhRg'j";r8L-ZBY.M|Y @ 0Dgt"?SJUJކq@2J&LvQmI_%%OAgT0ɓXMa$ryMmv%\e [N/W%I@˗^I"oWң5(;E:;nlM:F^+klU_f/5-_ߏWTż@c.6ƋTLFEw˽!1IM:|a Ŝ5>8֕ BBnR`U†mcj&c)DaUjŤv l`r<\F%RnF ;{XCl%Nv-Ze⠩3zt`&U~M1

高数微积分题一道The base of a circular fence with radius 10 m is given by x = 10 cos t; y = 10 sin t.Theheight of the fence varies from 3 m to 5 m such that,at position (x,y),the height is given bythe function h(x,y) = 4 + 0.01(x2 -y2).Suppos
高数微积分题一道
The base of a circular fence with radius 10 m is given by x = 10 cos t; y = 10 sin t.The
height of the fence varies from 3 m to 5 m such that,at position (x,y),the height is given by
the function h(x,y) = 4 + 0.01(x2 -y2).Suppose that 1 litre of paint covers 100 m2.Sketch
the fence and determine how much paint you will need if you paint both sides of the fence.
Ans:5 litre
请具体讲一下思路,万分感激!

高数微积分题一道The base of a circular fence with radius 10 m is given by x = 10 cos t; y = 10 sin t.Theheight of the fence varies from 3 m to 5 m such that,at position (x,y),the height is given bythe function h(x,y) = 4 + 0.01(x2 -y2).Suppos
如图进行微分.微元面积等于高度h乘以微元弧长.
dS=h*dl=h*R*dθ
所以
S=∫Rhdθ(积分范围从0到2π)
 =∫10*(4 + ((cosθ)^2 -(sinθ)^2))dθ
剩下的你会算了吧