sinx的幂级数展开式问题?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 16:41:16
sinx的幂级数展开式问题?
xT[SZW+Lf` 1C>9܄@NicfN C"-(e26ʁcO{oOcR%Oafַ'({i;'t,aMZaQ]f ,|R"0|Īoa6Lr\ Cd,aJa6_l9K1W. ~y.^.! N^W v>7'%!b`.^px.^7~WPr۾8k…wE_-<'?QtuDm2 8'҃bukRn1e2,zc 'U0-2h?-3B.Q;=r3qXdO]| Cm67q/qkiiU.UePU7O˱U~;2a\4FLF~^̘R0&S,eFkjXO_ʤWZCȠ|[E]Hv[19B7̍ qd [T#nt>ynB_FPK:ZomqҸe (Zx~G6.化yaE"e>Dj'I`9}_\&Wvq>xZg_Zirx]޺gTw

sinx的幂级数展开式问题?
sinx的幂级数展开式问题?

sinx的幂级数展开式问题?
你的公式抄错了.
应该是sin(x) = ∑{1 ≤ n} (-1)^(n-1)·x^(2n-1)/(2n-1)!,这样不会有n = 0的问题.
或者是sin(x) = ∑{0 ≤ n} (-1)^n·x^(2n+1)/(2n+1)!,这样n = 0也没问题.
证明可用带Lagrange余项的Taylor展开.
f(x) = ∑{0 ≤ k ≤ n} f^(k)(0)·x^k/k!+f^(n+1)(tx)·x^(n+1)/(n+1)!.
其中f^(k)(x)表示f(x)的k阶导数,f^(0)(x) = f(x),而t为(0,1)中的某个实数(与x有关).
sin(x)的各阶导数(从0阶开始)依次为sin(x),cos(x),-sin(x),-cos(x),sin(x),cos(x),...
在x = 0处取值依次为0,1,0,-1,0,1,...
因此展开到2n+1阶得:
sin(x) = ∑{0 ≤ k ≤ n} (-1)^k·x^(2k+1)/(2k+1)!+(-1)^(n+1)·sin(tx)·x^(2n+2)/(2n+2)!.
余项|(-1)^(n+1)·sin(tx)·x^(2n+2)/(2n+2)!| ≤ |x|^(2n+2)/(2n+2)!.
对任意给定的实数x,lim{n→∞} |x|^(2n+2)/(2n+2)!= 0,故级数逐点收敛到sin(x).
即有sin(x) = ∑{0 ≤ n} (-1)^n·x^(2n+1)/(2n+1)!.

级数我不讲太多,相信书本上有关于sinx的幂级数展开方法,至于为什么书上的公式会写错,我觉得可能是打印时笔误。应将分母修改正为(2n+1)!,否则第一项将无意义。补注:(-1)!是不存在的,并不是不能定义负数的“阶乘”,而是负整数的“阶乘”发散!...

全部展开

级数我不讲太多,相信书本上有关于sinx的幂级数展开方法,至于为什么书上的公式会写错,我觉得可能是打印时笔误。应将分母修改正为(2n+1)!,否则第一项将无意义。补注:(-1)!是不存在的,并不是不能定义负数的“阶乘”,而是负整数的“阶乘”发散!

收起