数列证明题一题设数列{An}满足:A1=1,且当n∈N*时,An^3+An^2×[1-A(n+1)]+1=A(n+1)求证:数列{An}是递增数列.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 07:48:18
数列证明题一题设数列{An}满足:A1=1,且当n∈N*时,An^3+An^2×[1-A(n+1)]+1=A(n+1)求证:数列{An}是递增数列.
x){6uӎ/7>rь';u Վyv/|m= m utG~ZϦoq̋3FG먑mmh flcx~$#g0y!="}.ːznXH lS AT|FX@Lۢm eUҺy*r aTgS[!)MBLU8Mp57뛠IZcg (3(l @w4LN

数列证明题一题设数列{An}满足:A1=1,且当n∈N*时,An^3+An^2×[1-A(n+1)]+1=A(n+1)求证:数列{An}是递增数列.
数列证明题一题
设数列{An}满足:A1=1,且当n∈N*时,
An^3+An^2×[1-A(n+1)]+1=A(n+1)
求证:数列{An}是递增数列.

数列证明题一题设数列{An}满足:A1=1,且当n∈N*时,An^3+An^2×[1-A(n+1)]+1=A(n+1)求证:数列{An}是递增数列.
证明:由题
A(n+1)=[An^3+An^2+1]/[An^2+1]
=[An^3+An+An^2+1-An]/[An^2+1]
=An+1-An/[An^2+1]
故A(n+1)-A(n)
=1-An/[An^2+1]
=[An^2+1-An]/[An^2+1]
=[(An-1/2)^2+3/4]/[An^2+1]
>=0
故A(n+1)>=A(n)
故数列{An}是递增数列

若数列an满足a1=1,且an+1=an/1+an.证明:数列1/an为等差数列,并求出数列an的通项公 数列证明题一题设数列{An}满足:A1=1,且当n∈N*时,An^3+An^2×[1-A(n+1)]+1=A(n+1)求证:数列{An}是递增数列. 【高考】若数列{an}满足,a1=1,且a(n+1)=an/1+an,证明,数列{1/an}为等差数列,并求出数列{an}的通...【高考】若数列{an}满足,a1=1,且a(n+1)=an/1+an,证明,数列{1/an}为等差数列,并求出数列{an}的通项公式 数列满足a1=1,和下图 证明2的n次方/an是等差数列 已知数列an满足a1=1,an+1=3an+1,证明{an+½}是等比数列 数列an满足:a1=1,a(n+1)=an/an +1 (1)证明1/an是等差数列.(2)数列an的通项公式 已知数列an满足:an+1-2an=2^n+1,且a1=2 (1)证明{an/2^n}是等差数列 (2)求数列an的 已知数列满足a1=1/2,an+1=2an/(an+1),求a1,a2已知数列满足a1=1/2,a(n+1)=2an/(an+1),求a1,a2;证明0 数列+数归题,已知数列{an}满足 a1=1/4an+1=5an/(an+5)猜测通项,并用数归证明 已知数列{an}满足a1=2,a(n+1)=2an/(an+2),证明:数列{1/an}为等差数列 已知数列满足a1=2,a(n+1)=2an-1/an,证明1/an-1为等差 已知数列{an}中,a1=3/5,数列an=2-1/an-1(n≥2,n∈N*),数列{bn}满足bn=1/an-1求证明数列{bn}是等差数列 已知函数f(X)=X/(3x+1),数列{an}满足a1=1,a(n+1)=f(an),证明数列{1/an}是等差数列 已知数列an满足an=4a(n-1)+3n-4,且a1=3,证明数列an+n为等比数列 【数学证明】已知数列an满足an+a(n+1)=2n+1,求证数列an为等差数列的充要条件为a1=1 数列an中,a1=3,an=(3an-1-2)/an-1,数列bn满足bn=an-2/1-an,证明bn是等比数列 2.求数列an通项公式和最大项3求liman 数列{An}满足a1=1/2,a1+a2+..+an=n方an,求an 定义:若数列{An}满足An+1=An2,则称数列{An}为“平方递推数列”.已知数列{an}中,a1=2,点(an,an+1)在函数f(x)=2x2+2x的图象上,其中n为正整数.(Ⅰ)证明:数列{2an+1}是“平方递推数列”,且数列{lg