已知:an=3n-1,bn=2^n,求数列{anbn}的前n项和

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 09:31:05
已知:an=3n-1,bn=2^n,求数列{anbn}的前n项和
xN1_nFG xo #'`

已知:an=3n-1,bn=2^n,求数列{anbn}的前n项和
已知:an=3n-1,bn=2^n,求数列{anbn}的前n项和

已知:an=3n-1,bn=2^n,求数列{anbn}的前n项和
cn=anbn=(3n-1)*2^n
Sn=2*2^1+5*2^2+……+(3n-1)*2^n
2Sn= 2*2^2+……+(3n-4)*2^n+(3n-1)*2^(n+1)
相减:
Sn=(3n-1)*2^(n+1)-3*(2^2+2^3+……+2^n)-2*2^1
=(3n-1)*2^(n+1)-3*[2^2-2^(n+1)]/(1-2)-4
=(3n-1)*2^(n+1)-3*2^(n+1)+12-4
=(3n-4)*2^(n+1)+8

anbn=(3n-1)*2^n
Sn=(3*1-1)*2^1+(3*2-1)*2^2+(3*3-1)*2^3+……+[3*(n-1)-1]*2^(n-1)+(3*n-1)*2^n
则2Sn=(3*1-1)*2^1*2+(3*2-1)*2^2*2+(3*3-1)*2^3*2+……+[3*(n-1)-1]*2^(n-1)*2+(3*n-1)*2^n*2
=(3*1-1)*2^2...

全部展开

anbn=(3n-1)*2^n
Sn=(3*1-1)*2^1+(3*2-1)*2^2+(3*3-1)*2^3+……+[3*(n-1)-1]*2^(n-1)+(3*n-1)*2^n
则2Sn=(3*1-1)*2^1*2+(3*2-1)*2^2*2+(3*3-1)*2^3*2+……+[3*(n-1)-1]*2^(n-1)*2+(3*n-1)*2^n*2
=(3*1-1)*2^2+(3*2-1)*2^3+(3*3-1)*2^4+……+[3*(n-1)-1]*2^n+(3*n-1)*2^(n+1)
下式减去上式:
Sn=-(3*1-1)*2^1-3*2^2-3*2^3-3*2^4-……-3*2^n+(3*n-1)*2^(n+1)
=-4+(3*n-1)*2^(n+1)-3*(2^2+2^3+2^4+……+2^n)
=-4+(3*n-1)*2^(n+1)-3*4*(2^n-1)
=8+3*n*2^(n+1)-7*2^(n+1)

收起

已知{an},{bn}均为等差数列,前n项的和为An,Bn,且An/Bn=2n/(3n+1),求a10/b10的值 等差数列{an},{bn}的前n项和分别为An,Bn,切An/Bn=2n/3n+1,求lim(n→∞)an/bn 已知数列{an},其中a1=1,a(n+1)=3^(2n-1)*an(n∈N),数列{bn}的前n项和Sn=log3(an/9^n)(n∈N)求an bn 已知an=3n-2,设bn=(-1)^(n+1)an*an+1,Tn为bn前n项和.求T2n 已知{an},{bn}是等差数列,他们的前N项和分别为An,Bn,An/Bn=2n/(3n+1),求lim an/bn的值 A2/3B1C根号6 /3D4/9 已知数列{an},an=2n+1,数列{bn},bn=1/2^n.求数列{an/bn}的前n项和 已知两等差数列an.bn,且a1+a2+.+an/b1+b2+.+bn=3n+1/4n+3,对于任意正整数n都成立,求an:bn. 已知等差数列{an}的前n项和为Sn=n^2+2n,(n∈+N),(1)求通项an (2)记bn=an×3^n,求数列{bn}的前n项和Tn. 已知数列{an}满足a(n+1)=2an+n^2,a1=2bn=an+n^2+2n+3,(n∈N*)(1)求证{bn}为等比数列(2)求{an}通项公式 等差数列求和已知{an}=1+(n-1)/2求{bn}=1/(n×an) 已知等比数列Bn=2^n,等差数列An=3n+1,设Cn=An*Bn,求Cn的前n项和Sn. 等差数列,它们的前n项和分别为An,Bn,已知An/Bn=(5n+3)/(2n-1),求a5/b8 已知两个等差数列{an},{bn}的前n项的和分别为Sn,Tn.若Sn/Tn=(5n+3)/(2n-1).求an/bn 已知等差数列an,bn,的前n项和分别为Sn,Tn,若Sn/Tn=2n/3n+1,求an/bn, 已知数列{An}与{Bn}满足:A1=λ,A(n+1)=2/3An+n-4,Bn=(-1)^n*(An-3n+21),其中x为实数,n为...已知数列{An}与{Bn}满足:A1=λ,A(n+1)=2/3An+n-4,Bn=(-1)^n*(An-3n+21),其中x为实数,n为正整数1.对任意数λ,证明数列{an}不是等比数 已知数列{an}满足a1=-1,an=[(3n+3)an+4n+6]/n,bn=3^(n-1)/an+2.求数列an的通向公式.设数列bn是的前n项和已知数列{an}满足a1=-1,an=[(3n+3)an+4n+6]/n,bn=3^(n-1)/an+2.(1)求数列an的通向公式.(2)设数列bn是的前n项和为sn, 已知数列{an}满足:1*a1+2*a2+3*a3+.+n*an=n(an的n是下标)(1)求数列公式(2)若bn=2^n/an求{bn}的前n项和 若bn=3的n次方*an,求bn的前n项和an=2n-1