化简:sin[(k+1)π+θ]×cos[(k+1)π-θ] / sin(kπ-θ)×cos(kπ+θ) (k∈Z)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 13:42:39
x){3{fgEӑm~Os;bOO/
io
(+ idy@e` M`@GQ@MR>/۳tiʟ=(آi[^=%'x6yv `3c
化简:sin[(k+1)π+θ]×cos[(k+1)π-θ] / sin(kπ-θ)×cos(kπ+θ) (k∈Z)
化简:sin[(k+1)π+θ]×cos[(k+1)π-θ] / sin(kπ-θ)×cos(kπ+θ) (k∈Z)
化简:sin[(k+1)π+θ]×cos[(k+1)π-θ] / sin(kπ-θ)×cos(kπ+θ) (k∈Z)
k为奇数 sin(kπ-θ)×cos(kπ+θ)=-sinθcosθ
sin[(k+1)π+θ]×cos[(k+1)π-θ] =sinθcosθ
k为偶数 sin(kπ-θ)×cos(kπ+θ)=-sinθcosθ
sin[(k+1)π+θ]×cos[(k+1)π-θ] =sinθcosθ
因此
sin[(k+1)π+θ]×cos[(k+1)π-θ] / sin(kπ-θ)×cos(kπ+θ)=-1
化简:sin[(k+1)π+θ]×cos[(k+1)π-θ] / sin(kπ-θ)×cos(kπ+θ) (k∈Z)
化简 sin[(k+1)π+θ]*cos[(k+1)π-θ]/sin(kπ-θ)*cos(kπ+θ) k∈z
化简:cos[(k+1)π-a]·sin(kπ-a)/cos[(kπ+a)·sin[(k+1)π+a] (k属于整数)
化简:cos[(k+1)π-α]*sin(kπ-α)/cos(kπ+α)*sin[(k+1)π+α]拜托了各位
化简[sin(kπ-α)*cos(kπ+α)]/{sin[(k+1)π+α]*cos[(k+1)π-α]}
化简sin(kπ-α)cos(kπ+α)/sin[(k+1)π+α]cos[(k+1)π+α]
已知sin(θ+kπ)=2cos[θ+(k+1)π],k∈Ζ,求4sinθ-2cosθ/5cosθ+3sinθ的值
设k为整数,化简sin(kπ-a)cos[(k-1)π-a]/sin[(k+1)π+a]cos(kπ+a)
化简:sin(kπ-a)cos[(k-1)π-a]/sin[(k+1)π+a]cos(kπ+a) k∈Z
化简:sin(kπ-a)cos[(k-1)π-a]/sin[(k+1)π+a]cos(kπ+a) k∈Z
化简:sin(kπ-2)cos[(k-1)π-2]/sin[(k+1)π+2]cos(kπ+2),k属于Z
sin(kπ-α)*cos〔(k-1)π-α〕/sin〔(k+1)π+α〕*cos(kπ+α) ,k属于Z
化简 {sin[α+(k+1)π]+sin[α-(k+1)π]}/[sin(α+kπ)*cos(α-kπ)],k∈Z
sin[(k+1)π+a]cos(kπ+a)分之 sin(kπ-a)cos[(k-1)π-a] k为整数,化简
[sin(kπ-a)cos(kπ-π-a)]/[sin(kπ+π+a)cos(kπ+a)] 化[sin(kπ-a)cos(kπ-π-a)]/[sin(kπ+π+a)cos(kπ+a)] 化简
化简sin(kπ+a)+sin(a-kπ)除以sin(a+Kπ)cos(a-Kπ).(kEZ)
已知θ≠kπ(k∈Z)求证:tan(θ/2)=(1-cosθ)/sinθ
已知sin(θ+kπ)=-2cos(θ+kπ)(k∈Z) 求1/4sin^2θ+2/5cos^2θ