已知函数f(x)=1/3x^3+1/2ax^2+bx在区间[-1,1),(1,3]内各有一个极值点.(1)求a^2-4b的最大值.(2)当a^2-4b=8时,设函数y=f(x)在点A(1,f(1))处的切线为l,若l在点A处穿过函数y=f(x)的图像(即动点在点A附近沿

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 03:50:45
已知函数f(x)=1/3x^3+1/2ax^2+bx在区间[-1,1),(1,3]内各有一个极值点.(1)求a^2-4b的最大值.(2)当a^2-4b=8时,设函数y=f(x)在点A(1,f(1))处的切线为l,若l在点A处穿过函数y=f(x)的图像(即动点在点A附近沿
xVNG~4Q" 7JhI!UV. ĎҔ_ֶGIwv׿ =&`(QUUgΙs;gNM|X骾 <+ &NKx78j1qt 'l\+Fzx!v O+7Nq 5}5gz^> 1pl(׵byaۇ^ty❩TNh7N~egB4nJ /I CBa3x*S"`V ̵MVjgGo}5# Ֆ|xG+n!8Ǹs0Ze9TY1-}A_-ԡVʵ+sM5%XLpN=oX>ª#w 򎹳o/(Ȍ$V\k3]=+ S;ƣ6<Q~?o)M5y6˦fl_(v3ilšIŒ9kT&i4탤8r#ոi eAL*6nT+ΘS0-(-|9.@lW@է O8 ZY^jԇʬ2Vɟ |p:[zAC: Vd~JYb* Ԙ20 :ݤ@8'18ˡ'D[ y4]iB֔]Vʻh&{ǚhC#S]DGOGE\JK.` BrUkRG ZPY-i⩱'p5rX3-M YC9dl/tE؟ΖG+k2cIE?;6ܿiᅙ *UW/px3 ZL1ƥ=Xy+m֗o}' wxY'6kaݣ6HH_ ZDg9Fܿ4f&.,`544 1t%26&_߷|i_|TH|x;

已知函数f(x)=1/3x^3+1/2ax^2+bx在区间[-1,1),(1,3]内各有一个极值点.(1)求a^2-4b的最大值.(2)当a^2-4b=8时,设函数y=f(x)在点A(1,f(1))处的切线为l,若l在点A处穿过函数y=f(x)的图像(即动点在点A附近沿
已知函数f(x)=1/3x^3+1/2ax^2+bx在区间[-1,1),(1,3]内各有一个极值点.(1)求a^2-4b的最大值.(2)当a^2-4b=8时,设函数y=f(x)在点A(1,f(1))处的切线为l,若l在点A处穿过函数y=f(x)的图像(即动点在点A附近沿曲线y=f(x)运动,经过点A时,从l的一侧进入另一侧,),求函数f(x)的表达式.

已知函数f(x)=1/3x^3+1/2ax^2+bx在区间[-1,1),(1,3]内各有一个极值点.(1)求a^2-4b的最大值.(2)当a^2-4b=8时,设函数y=f(x)在点A(1,f(1))处的切线为l,若l在点A处穿过函数y=f(x)的图像(即动点在点A附近沿
先求得函数f(x)的一阶导数f(x)`=xˆ2+ax+b,x属于R.令f(x)`=0得:
x=[a±根号下(a²-4b)]/2
(1):依题得函数f(x)在区间[-1,1),(1,3]内各有一个极值点,也就是说f(x)`=0有实根,而且两实根分别落在区间[-1,1),(1,3]内.可见a²-4b≥0且{-1≤[a-根号下(a²-4b)]/2<1,1<[a﹢根号下(a²-4b)]/2≤3},而且不等式方程组求得的a²-4b的范围不为空集(如果为空集,也就是说a²-4b的值不存在,不符合题意).
将上述不等式方程组整理得:﹛a²-4b≥0,2-a<根号下(a²-4b)≤6-a,a-2<根号下(a²-4b)≤2+a﹜(式1)
因为a²-4b≥0,所以根号下(a²-4b)≥0,同时不等式方程组求得的a²-4b的范围不为空集.可见﹛6-a≥0,2+a≥0,(6-a)>a-2,2+a>2-a﹜,(在数轴上可以画出)由此可以求得0<a<4.再依据0<a<4和(式1)来讨论根号下(a²-4b)的取值范围.
当0<a<2时,由式1可以求得:2-a<根号下(a²-4b)≤2+a;
当a=2时,由式1可以求得:0<根号下(a²-4b)≤4;
当2<a<4时,由式1可以求得:a-2<根号下(a²-4b)≤6-a.
综上得:根号下(a²-4b)最大可以取到4,此时a=2,则a²-4b最大可以取到16.
所以a²-4b的最大值为16
(2):f(1)=1/3+(1/2)a+b,f(1)`= 1+a+b,f(x)``=2x+a.
由已知得函数y=f(x)在点A(1,f(1))处的切线在点A处穿过函数y=f(x)的图像,同时函数连续,出现这种情况有三种情形:1,点A(1,f(1))是函数的拐点,则f(1)``=2+a=0,算得a=-2,而由(1)得0<a<4,可见不满足,舍去;
2,函数在点A(1,f(1))处切线的斜率为0,但不是函数的极值.则1+a+b=0,解方程组﹛1+a+b=0,a²-4b=8﹜得:a=2±2倍根号2,而由(1)得0<a<4,可见不满足,舍去;
3,函数在点A(1,f(1))处切线的斜率为无穷大,也即是说函数在点A(1,f(1))处的倒数不存在,即a²-4b<0,而a²-4b=8,矛盾.
综上得,满足这样的条件的函数不存在!

神啊,,你那x的立方,和x的平方是分子还是分母啊。。。。。已知函数f(x)=(1/3)x^3+(1/2)ax^2+bx在区间[-1,1),(1,3]内各有一个极值点。(1)求a^2-4b的最大值。(2)当a^2-4b=8时,设函数y=f(x)在点A(1,f(1))处的切线为l,若l在点A处穿过函数y=f(x)的图像(即动点在点A附近沿曲线y=f(x)运动,经过点A时,从l的一侧进入另一侧,),求函...

全部展开

神啊,,你那x的立方,和x的平方是分子还是分母啊。。。。。

收起